JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for TUCBA01: Measurements of the Amplitude-Dependent Microwave Surface Resistance of a Proximity-Coupled Au/Nb Bilayer

TY  - CONF
AU  - Oseroff, T.E.
AU  - Liepe, M.
AU  - Sun, Z.
ED  - Saito, Kenji
ED  - Xu, Ting
ED  - Sakamoto, Naruhiko
ED  - Schaa, Volker R.W.
ED  - Thomas, Paul W.
TI  - Measurements of the Amplitude-Dependent Microwave Surface Resistance of a Proximity-Coupled Au/Nb Bilayer
J2  - Proc. of SRF2023, Grand Rapids, MI, USA, 25-30 June 2023
CY  - Grand Rapids, MI, USA
T2  - International Conference on RF Superconductivity
T3  - 21
LA  - english
AB  - A sample host cavity is used to measure the surface resistance of a niobium substrate with a gold film deposited in place of its surface oxide. This talk will report about this measurement result. The film thickness of the gold layer was increased from 0.1 nm to 2.0 nm in five steps to study the impact of the normal layer thickness. The 0.1 nm film was found to reduce the surface resistance below its value with the surface oxide present and to enhance the quench field. The magnitude of the surface resistance increased substantially with gold film thickness. The surface resistance field-dependence appeared to be independent from the normal layer thickness. The observations reported in this work have profound implications for both low-field and high-field S.C. microwave devices. By controlling or eliminating the niobium oxide using a gold layer to passivate the niobium surface, it may be possible to improve the performance of SRF cavities used for particle acceleration. This method to reduce surface oxidation while maintaining low surface resistance could also be relevant for minimizing dissipation due to two-level systems observed in low-field low-temperature devices.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 369
EP  - 373
KW  - niobium
KW  - cavity
KW  - factory
KW  - SRF
KW  - extraction
DA  - 2023/09
PY  - 2023
SN  - 2673-5504
SN  - 978-3-95450-234-9
DO  - doi:10.18429/JACoW-SRF2023-TUCBA01
UR  - https://jacow.org/srf2023/papers/tucba01.pdf
ER  -