JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for WEPWB057: Refurbishment of an Elbe-Type Cryomodule for Coated HOM-Antenna Tests for MESA

TY  - CONF
AU  - Plattner, P.S.
AU  - Hug, F.
AU  - Stengler, T.
ED  - Saito, Kenji
ED  - Xu, Ting
ED  - Sakamoto, Naruhiko
ED  - Schaa, Volker R.W.
ED  - Thomas, Paul W.
TI  - Refurbishment of an Elbe-Type Cryomodule for Coated HOM-Antenna Tests for MESA
J2  - Proc. of SRF2023, Grand Rapids, MI, USA, 25-30 June 2023
CY  - Grand Rapids, MI, USA
T2  - International Conference on RF Superconductivity
T3  - 21
LA  - english
AB  - The Mainz Energy-Recovering Superconducting Accelerator (MESA), an energy-recovering (ER) LINAC, is currently under construction at the university Mainz. In the ER mode a continues wave (CW) beam is accelerated from 5 MeV up to 10⁵ MeV with a beam current of up to 1 mA. This current is accelerated and decelerated twice within a cavity. For future experiments, the beam current limit has to be pushed up to 10 mA. An analysis of the MESA cavities has shown that the HOM antennas quench at such high beam currents due to the extensive power deposition and the resulting heating of the HOM coupler. To avoid quenching it is necessary to use superconducting materials with higher critical temperature. For this purpose, the HOM antennas will be coated with NbTiN and Nb3SN and their properties will be investigated. For use in the accelerator, the HOM antennas will be installed in the cavities of a former ALICE cryomodule, kindly provided by STFC Daresburry. This paper will show both the status of the refurbishment of the ALICE module to suit MESA, and the coating of the HOM antennas.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 709
EP  - 713
KW  - HOM
KW  - cavity
KW  - cryomodule
KW  - electron
KW  - niobium
DA  - 2023/09
PY  - 2023
SN  - 2673-5504
SN  - 978-3-95450-234-9
DO  - doi:10.18429/JACoW-SRF2023-WEPWB057
UR  - https://jacow.org/srf2023/papers/wepwb057.pdf
ER  -