JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for WEPWB135: A Novel Twin Drive Tuner Mechanism for 1.3 GHz ILC Cavity

TY  - CONF
AU  - Yamanaka, M.
ED  - Saito, Kenji
ED  - Xu, Ting
ED  - Sakamoto, Naruhiko
ED  - Schaa, Volker R.W.
ED  - Thomas, Paul W.
TI  - A Novel Twin Drive Tuner Mechanism for 1.3 GHz ILC Cavity
J2  - Proc. of SRF2023, Grand Rapids, MI, USA, 25-30 June 2023
CY  - Grand Rapids, MI, USA
T2  - International Conference on RF Superconductivity
T3  - 21
LA  - english
AB  - A tuner is a device that adjusts the resonant frequency of a cavity. Here we propose a new tuner mechanism for the 1.3 GHz ILC cavity. A bellow is provided in the central portion of the helium tank in the longitudinal direction, and flanges are provided on both sides of the bellows. A linear motion actuator is fixed to the flange on one side, and the frequency is changed by pushing and pulling the flange on the opposite side. Significantly, two linear motion actuators are placed in circumference and working simultaneously. It is named a twin-drive tuner. According to the ILC specification, the cavity has a spring constant of 3 KN/mm, requiring a stroke of 2 mm to adjust the 600 kHz range. A loading force of 6 kN is required. This is shared by two linear motion actuators. We developed a prototype actuator with a loading force of 4 kN per unit. It consists of a stepping motor and a sliding screw with a plastic nut. An experimental device was constructed using this actuator and a 1.3 GHz cavity with a helium tank, and the frequency tuning was evaluated. The displacement between the flanges and the frequency are proportional, both have good linearity, and the slope is 296 kHz/mm.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 914
EP  - 916
KW  - cavity
KW  - SRF
KW  - FEL
KW  - operation
KW  - site
DA  - 2023/09
PY  - 2023
SN  - 2673-5504
SN  - 978-3-95450-234-9
DO  - doi:10.18429/JACoW-SRF2023-WEPWB135
UR  - https://jacow.org/srf2023/papers/wepwb135.pdf
ER  -