Author: Cenni, E.
Paper Title Page
FRIBA02 Instrumentation for High Performance Cavities and Cryomodule Field Emission Analysis 978
 
  • G. Devanz
    CEA-IRFU, Gif-sur-Yvette, France
  • M. Baudrier, E. Cenni, L. Maurice, O. Piquet
    CEA-DRF-IRFU, France
 
  Field emission (FE) is one of the main reasons for the degradation of accelerator cryomodules, as field emitted current tends to become more severe during the beam operation. It is essential to better understand how this phenomenon is generated and evolves from the SRF cavity preparation in the clean room, through their assembly in the cryomodule until their final test and operation. Due to the shielding environment of a cavity in its vertical test stand, or the architecture of a cryomodule, the more faint radiation occurring at the FE onset remains undetected. More precise diagnostic and analysis tools are required to gain more information. We present the developpement of dedicated time-resolved detectors for the FE radiation which aim at improving its coverage in terms of solid angle and lower energy threshold sensitivity. We approach this topic through detailed simulation based on the Geant4 toolkit in order to analyse the interaction of FE radiation with the cavity environement and optimize the detectors with respect to their application in cryomodule or vertical test stands. We illustrate by analysing recent cryomodule experimental test data.  
slides icon Slides FRIBA02 [9.606 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-FRIBA02  
About • Received ※ 27 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 05 July 2023 — Issue date ※ 09 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMB055 CEA Contribution to the PIP-II Linear Accelerator 234
 
  • N. Bazin, S. Berry, J. Drant, M. Fontaine, P. Garin, H. Jenhani, A. Raut, P. Sahuquet, C. Simon
    CEA-DRF-IRFU, France
  • J. Belorgey, Q. Bertrand, P. Brédy, E. Cenni, C. Cloué, R. Cubizolles, S. Ladegaillerie, A. Le Baut, A. Moreau, O. Piquet, J. Plouin
    CEA-IRFU, Gif-sur-Yvette, France
 
  The Proton Improvement Plan II (PIP-II) that will be installed at Fermilab is the first U.S. accelerator project that will have significant contributions from international partners. CEA joined the international collaboration in 2018 and will deliver 10 low-beta cryomodules as In-Kind Contributions to the PIP-II project, with cavities supplied by LASA-INFN (Italy) and VECC-DAE (India), and power couplers and tuning systems supplied by Fermilab. An important milestone was reached in March 2023 with the Final Design Review of the cryomodule, launching the pre-production phase. This paper presents the status CEA activities on the design, manufacturing, assembly and tests of the cryomodules and the upgrade of the existing infrastructures to the PIP-II requirements.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB055  
About • Received ※ 25 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 03 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB064 Performance Analysis from ESS Cryomodule Testing at CEA 727
 
  • O. Piquet, C. Arcambal, Q. Bertrand, P. Bosland, E. Cenni, G. Devanz, T. Hamelin
    CEA-IRFU, Gif-sur-Yvette, France
  • P. Sahuquet
    CEA-DRF-IRFU, France
 
  CEA Saclay is in charge of the production of 30 elliptical cavities cryomodule as part of the in Kind contribution to the ESS superconducting. The two medium and high beta prototypes and the three first of each type of the series cryomodules have been tested at CEA in slightly different conditions than at ESS (both in terms of cryogenic operation as well as RF conditions). The goal of these tests was to validate the assembly procedure before the delivery of the series to ESS where the final acceptance tests are performed. This paper summarizes the main results obtained during the tests at CEA with a particular attention to the field emission behaviour.  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB064  
About • Received ※ 20 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 07 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)