Paper | Title | Page |
---|---|---|
WEPWB048 | Geometry Optimization for a Quadrupole Resonator at Jefferson Lab | 670 |
|
||
Funding: This manuscript is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-6OR23177 with Jefferson Science Associates The quadrupole resonator (QPR) is a sample characterization tool to measure the RF properties of superconducting materials using the calorimetry method at different temperatures, magnetic fields, and frequencies. Such resonators are currently operating at CERN and HZB but suffer from Lorentz force detuning and modes overlapping, resulting in higher uncertainties in surface resistance measurement. Using the two CERN’s QPR model iterations, the geometry was optimized via electromagnetic and mechanical simulations to eliminate these issues. The new QPR version was modeled for an increasing range of magnetic fields. The magnetic field is concentrated at the center of the sample to reduce the uncertainty in surface resistance measurements significantly. This paper will discuss the QPR geometry optimization for the new version of QPR, which is now progressing towards fabrication. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB048 | |
About • | Received ※ 19 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 21 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |