Paper | Title | Page |
---|---|---|
WEPWB109 | PI Loop Resonance Control for the Dark Photon Experiment at 2 K using a 2.6 GHz SRF cavity | 847 |
|
||
Two 2.6 GHz cavities are being used for dark photon search at VTS in FNAL. During testing at 2 K the cavities experience frequency detuning caused by microphonics and slow frequency drifts. The experiment requires that the two cavities have the same frequency within 5 Hz. These two cavities are equipped with frequency tuners consisting of three piezo actuators. The piezo actuators are used for fine-fast frequency tuning. A PI loop utilizing the piezos was used to maintain both cavities at the same frequency, and the results are presented. | ||
Poster WEPWB109 [1.151 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB109 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 18 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB133 | Testing of the 2.6 GHz SRF Cavity Tuner for the Dark Photon Experiment at 2 K | 907 |
|
||
At FNAL two 2.6 GHz SRF cavities are being used to search for dark photons, the experiment can be conducted at 2 K or in a dilution refrigerator. Precise frequency tuning is required for these two cavities so they can be matched in frequency. A cooling capacity constraint on the dilution refrigerator only allows piezo actuators to be part of the design of the 2.6 GHz cavity tuner. The tuner is equipped with three encapsulated piezo that deliver the long- and short-range frequency tuning. Modifications were implemented on the first tuner design due to the low forces on the piezos due to the cavity. Three brass rods with Belleville washers were added to the design to increase the overall force on the piezos. The results at 2 K of testing this tuner with and without the modification will be presented. | ||
Poster WEPWB133 [0.829 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB133 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 04 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXA06 |
Dark Matter and Gravitational Waves Experiments with SRF Cavities | |
|
||
Funding: This material is based upon work supported by the U.S. DOE, SC, National QIS Research Centers, Superconducting Quantum Materials and Systems Center (SQMS) under contract n. DE-AC02-07CH11359 Recent efforts have shown that the SRF technology developed for accelerators can be successfully applied to new applications, including quantum computing, dark matter searches and beyond the standard model physics. The ultra-high quality factor of SRF cavities can allow to achieve unprecedented sensitivity in fields outside of the usual accelerator applications, for examples in dark photon and axion searches (both as dark matter candidates and lab-produced particles). Applications of SRF cavities for gravitational waves searches are also being investigated. The SQMS Physics and Sensing thrust is leveraging SRF cavities and QIS to search for new particles and BSM physics. This talk will highlight experiments where SRF cavities have already set experimental bounds on new physics. |
||
Slides THIXA06 [5.984 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |