Author: Hoffmann, A.
Paper Title Page
MOPMB067 Design of a Cathode Insertion and Transfer System for LCLS-II-HE SRF Gun 267
 
  • R. Xiang, A. Arnold, S. Gatzmaga, A. Hoffmann, P. Murcek, R. Steinbrück, J. Teichert
    HZDR, Dresden, Germany
  • C. Adolphsen, J. Smedley
    SLAC, Menlo Park, California, USA
  • W. Hartung, S.H. Kim, T.K. Konomi, S.J. Miller, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • M.P. Kelly, T.B. Petersen
    ANL, Lemont, Illinois, USA
  • J.W. Lewellen
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by cooperation project between MSU and HZDR RC113062 from the U.S. Department of Energy Office of Science under Cooperative Agreement DE-AC02-76SF00515.
Superconducting radio frequency photo injectors (SRF gun) offer advantages for operating in continuous wave (CW) mode and generating high-brightness and high-current beams. A new SRF gun is designed as a low emittance photo injector for LCLS-II-HE and a prototype gun is currently being developed under collaboration between SLAC, FRIB, HZDR and ANL. The aim is to demonstrate stable CW operation at a cathode gradient of 30 MV/m. One of the crucial component for successful SRF gun operation is the photocathode system. The new SRF gun will adopt the HZDR-type cathode, which includes a cathode holder fixture (cathode stalk) developed by FRIB and a sophisticated cathode exchange system designed by HZDR. This innovative cathode insertion system ensures accurate, particle-free and warm cathode exchanges. A novel alignment process targets the cathode to the stalk axis without touching cathode plug itself. To commission the prototype gun, metallic cathodes will be used. A specifically designed vacuum system ensures vacuum pressure of 10-9 mbar for transport of a single cathode from the cleanroom to the gun. Thus maintaining cathode quality.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB067  
About • Received ※ 18 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)