Author: Li, Z.
Paper Title Page
TUPTB046 Development and Performance of RFD Crab Cavity Prototypes for HL-LHC AUP 531
 
  • L. Ristori, P. Berrutti, M. Narduzzi
    Fermilab, Batavia, Illinois, USA
  • A. Castilla
    JLAB, Newport News, USA
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • N.A. Huque
    JLab, Newport News, Virginia, USA
  • Z. Li, A. Ratti
    SLAC, Menlo Park, California, USA
 
  Funding: Operated by Fermi Research Alliance, LLC, under Contract DE-AC02-07CH11359 with the U.S. DOE
The US will be contributing to the HL-LHC upgrade at CERN with the fabrication and qualification of RFD crabbing cavities in the framework of the HL-LHC Accelerator Upgrade Project (AUP) managed by Fermilab. AUP received Critical Decision 3 (CD-3) approval by DOE in December 2020 launching the project into the production phase. The electro-magnetic design of the cavity was inherited from the LHC Accelerator Research Program (LARP) but needed to be revised to meet new project requirements and to prevent issues encountered during beam tests performed at CERN in the R&D phase. Two prototype cavities were manufactured in industry and cold tested. Challenges specific to the RFD cavity were the stringent interface tolerances, the pole symmetry and the higher-order-mode impedance spectrum. Chemical processing and heat treatments were performed initially at FNAL/ANL and are now being transferred to industry for the production phase. HOM dampers are manufactured and validated by JLAB. A summary of cold test results with and without HOM dampers is presented.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB046  
About • Received ※ 20 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 11 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTB068 EIC 197 MHz Crab Cavity RF Optimization 584
 
  • Z. Li
    SLAC, Menlo Park, California, USA
  • S.U. De Silva, J.R. Delayen
    ODU, Norfolk, Virginia, USA
  • R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • Q. Wu, B.P. Xiao, W. Xu
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under U.S. DOE K No. DE-SC0012704, by Jefferson Science Associates, LLC under U.S. DOE K No. DE-SC0002769, and by DOE K No. DE-AC02-76SF00515.
Crab cavities, operating at 197 MHz and 394 MHz respectively, will be used to compensate the loss of luminosity due to a 25 mrad crossing angle at the interaction point in the Electron Ion Collider (EIC). Both crab cavities are of the RF Dipole (RFD) shape. To meet the machine design requirements, there are a few important cavity design considerations that need to be addressed. First, to achieve stable cavity operation at the design voltages, cavity geometry details must be optimized to suppress potential multipacting. Incorporating strong HOM damping in the cavity design is required for the beam stability and quality. Furthermore, due to the finite pole width, the multipole fields, especially the sextupole and the decapole terms, need to be minimized to maintain an acceptable beam dynamic aperture. This paper will present the RF optimization details of the 197 MHz cavity.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB068  
About • Received ※ 16 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 03 July 2023 — Issue date ※ 08 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)