Paper | Title | Page |
---|---|---|
MOPMB065 | Design Status of BCC Cryomodule for LCLS-II HE | 263 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. A Buncher or Capture Cavity (BCC) Cryomodule is currently in development at Fermilab for use in a second injector for LCLS-II-HE. The BCC Cryomodule is designed to contain one 1.3 GHz cavity and one solenoid magnet as part of a 100MeV low emittance injector. The design considerations for the Cryomodule are similar to the LCLS-II cryomodule with additional requirements to account for additional vacuum loading at the end of this vessel due to the termination of the insulating vacuum. To accomplish this design, the cryomodule is being developed using the experience gained during the development of the LCLS-II cryomodule. The design, analysis, and status of the Cryomodule will be discussed. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB065 | |
About • | Received ※ 18 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 13 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTB047 | The Evaluation of Mechanical Properties of LB650 Cavities | 536 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC, under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. The 650 MHz cavities have a stronger requirement of niobium mechanical properties because of the geometric shape of the cavity due to reduced beta. The mechanical property of the niobium half-cell was measured following various heat treatments. The 5-cell cavities were tested in a controlled drop test fashion and the real-world road test. The result showed that the 900C heat treatment was compatible with cavity handling and transportation during production. The test provides the bases of the transportation specification and shipping container design guidelines. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB047 | |
About • | Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 14 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |