Author: Packard, D.A.
Paper Title Page
TUPTB033 On the Way to a 10 MeV, Conduction-Cooled, Compact SRF Accelerator 471
 
  • H. Vennekate, G. Cheng, G. Ciovati, J. Guo, K.A. Harding, J. Henry, U. Pudasaini, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • A. Castilla
    JLAB, Newport News, USA
  • F.E. Hannon
    Phase Space Tech, Bjärred, Sweden
  • D.A. Packard
    GA, San Diego, California, USA
  • J. Rathke
    TechSource, Los Alamos, New Mexico, USA
  • T. Schultheiss
    TJS Technologies, Commack, New York, USA
 
  Funding: The presentation has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
After the suc­cess of de­sign­ing a com­pact 1 MeV, 1 MW ac­cel­er­a­tor based on con­duc­tion-cooled SRF, Jef­fer­son Lab is now pur­su­ing a con­cept to pro­vide a ten­fold in­crease of the beam en­ergy. The higher en­ergy sig­nif­i­cantly ex­tends the range of ap­pli­ca­tions for en­vi­ron­men­tal re­me­di­a­tion and in­dus­try in gen­eral. The ob­vi­ous chal­lenge for SRF is to move from a sin­gle-cell to a mul­ti­cell cav­ity while main­tain­ing high ef­fi­ciency and the abil­ity to op­er­ate the ma­chine with­out a com­plex cryo­genic plant. The con­tri­bu­tion pre­sents the lat­est re­sults of this de­sign study with re­spect to its cen­ter­piece, a Nb₃Sn coated 915 MHz five-cell cav­ity and its cor­re­spond­ing RF com­po­nents, i.e. FPC and HOM ab­sorber, as well as the con­duc­tion-cool­ing con­cept based on com­mer­cially avail­able cry­ocool­ers.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB033  
About • Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THIXA04
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators  
 
  • G. Ciovati, S. Balachandran, G. Cheng, E.F. Daly, P. Dhakal, K.A. Harding, F. Marhauser, T. Powers, U. Pudasaini, R.A. Rimmer, H. Vennekate
    JLab, Newport News, VA, USA
  • J.P. Anderson, B.R.L. Coriton, L.D. Holland, K.R. McLaughlin, D.A. Packard, D.M. Vollmer
    GA, San Diego, California, USA
  • A.V. Gurevich
    ODU, Norfolk, Virginia, USA
  • J. Rathke
    TechSource, Los Alamos, New Mexico, USA
  • T. Schultheiss
    TJS Technologies, Commack, New York, USA
 
  Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960.
Re­cent progress in the de­vel­op­ment of high-qual­ity Nb₃Sn film coat­ings along with the avail­abil­ity of cry­ocool­ers with high cool­ing ca­pac­ity at 4 K makes it fea­si­ble to op­er­ate SRF cav­i­ties cooled by ther­mal con­duc­tion at rel­e­vant ac­cel­er­at­ing gra­di­ents for use in ac­cel­er­a­tors. We have de­vel­oped a pro­to­type sin­gle-cell cav­ity to prove the fea­si­bil­ity of op­er­a­tion up to the ac­cel­er­at­ing gra­di­ent re­quired for 1 MeV en­ergy gain, cooled by con­duc­tion with cry­ocool­ers. The cav­ity has a ~3 ¿m thick Nb₃Sn film on the inner sur­face, de­posited on a ~4 mm thick bulk Nb sub­strate and a bulk ~7 mm thick Cu outer shell with three Cu at­tach­ment tabs. The cav­ity was tested up to a peak sur­face mag­netic field of 53 mT in liq­uid He at 4.3 K. A hor­i­zon­tal test cryo­stat was de­signed and built to test the cav­ity cooled with three cry­ocool­ers. The rf tests of the con­duc­tion-cooled cav­ity achieved a peak sur­face mag­netic field of 50 mT and sta­ble op­er­a­tion was pos­si­ble with up to 18.5 W of rf heat load. The peak fre­quency shift due to mi­cro­phon­ics was 23 Hz. These re­sults rep­re­sent the high­est peak sur­face mag­netic field achieved in a con­duc­tion-cooled SRF cav­ity to date
 
slides icon Slides THIXA04 [3.906 MB]  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)