Author: Shi, J.
Paper Title Page
WEPWB044 Realization of Accelerating Gradient Larger than 25 MV/m on High-Q 1.3 GHz 9-Cell Cavities for SHINE 658
SUSPB039   use link to see paper's listing under its alternate paper code  
 
  • Y. Zong, Q.X. Chen, X. Huang, Z. Wang
    SINAP, Shanghai, People’s Republic of China
  • J.F. Chen, P.C. Dong, H.T. Hou, X.Y. Pu, J. Shi, S. Sun, D. Wang, J.N. Wu, S. Xing, S.J. Zhao, Y.L. Zhao
    SARI-CAS, Pudong, Shanghai, People’s Republic of China
  • Y.W. Huang
    ShanghaiTech University, Shanghai, People’s Republic of China
  • X.W. Wu
    Zhangjiang Lab, Shanghai, People’s Republic of China
 
  Funding: This work was supported by Shanghai Municipal Science and Technology Major Project (No. 2017SHZDZX02).
We present our studies on the optimized nitrogen-doping and medium-temperature baking recipes applied on 1.3GHz SRF cavities, aiming at meeting the requirements of the SHINE project. The optimized nitrogen-doping process resulted in achieving a Q₀ of over 4.0×1010 at medium field and a maximum accelerating gradient exceeding 35 MV/m on single cell cavities, and a Q₀ of over 2.8×1010 at medium field and a maximum accelerating gradient exceeding 26 MV/m in 9-cell cavities. For 1.3 GHz 9-cell cavities subjected to medium-temperature baking, Q₀ values exceeding 3.5×1010 at 16 MV/m and maximum accelerating gradients surpassing 25 MV/m were achieved. These studies provide two options of high-Q recipes for SHINE cavities. The treatment processes of cavities and their vertical test results are described in this paper.
*chenjinfang@sari.ac.cn
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB044  
About • Received ※ 19 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 26 June 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)