Paper | Title | Page |
---|---|---|
WECAA01 | Progress in European Thin Film Activities | 607 |
|
||
Funding: This project has received funding from the European Union s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Thin-film cavities with higher Tc superconductors (SC) than Nb promise to move the operating temperature from 2 to 4.5 K with savings 3 orders of magnitude in cryogenic power consumption. Several European labs are coordinating their efforts to obtain a first 1.3 GHz cavity prototype through the I.FAST collaboration and other informal collaborations with CERN and DESY. R&D covers the entire production chain. In particular, new production techniques of seamless Copper and Niobium elliptical cavities via additive manufacturing are studied and evaluated. New acid-free polishing techniques to reduce surface roughness in a more sustainable way such as plasma electropolishing and metallographic polishing have been tested. Optimization of coating parameters of higher Tc SC than Nb (Nb₃Sn, V₃Si, NbTiN) via PVD and multilayer via ALD are on the way. Finally, rapid heat treatments such as Flash Lamp Annealing and Laser Annealing are used to avoid or reduce Cu diffusion in the SC film. The development and characterization of SC coatings is done on planar samples, 6 GHz cavities, choke cavities, QPR and 1.3 GHz cavities. This work presents the progress status of these coordinated efforts. |
||
Slides WECAA01 [15.846 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WECAA01 | |
About • | Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB001 | Development and Testing of Split 6 GHz Cavities With Niobium Coatings | 51 |
|
||
Superconducting thin-films on a copper substrate are used in accelerator RF cavities as an alternative to bulk Nb due to the high thermal conductivity of copper and the lower production costs. Although thin-film coated RF cavities can match, or even exceed the performance of bulk Nb, there are some challenges around the deposition. The RF cavities are often produced as two half-cells with a weld across the centre where the RF surface current is highest, which could reduce cavity performance. To avoid this, a cavity can be produced in 2 longitudinally split halves, with the join parallel to the surface current. As the current doesn’t cross the join a simpler weld can be performed far from the fields, simplifying the manufacturing process, and potentially improving the cavities performance. This additionally allows for different deposition techniques and coating materials to be used, as well as easier post-deposition quality control. This paper discusses the development and testing of 6 GHz cavities that have been designed and coated at the Cockcroft Institute, using low temperature RF techniques to characterise cavities with different substrate preparations and coating techniques. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB001 | |
About • | Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |