Paper | Title | Page |
---|---|---|
WEPWB109 | PI Loop Resonance Control for the Dark Photon Experiment at 2 K using a 2.6 GHz SRF cavity | 847 |
|
||
Two 2.6 GHz cavities are being used for dark photon search at VTS in FNAL. During testing at 2 K the cavities experience frequency detuning caused by microphonics and slow frequency drifts. The experiment requires that the two cavities have the same frequency within 5 Hz. These two cavities are equipped with frequency tuners consisting of three piezo actuators. The piezo actuators are used for fine-fast frequency tuning. A PI loop utilizing the piezos was used to maintain both cavities at the same frequency, and the results are presented. | ||
Poster WEPWB109 [1.151 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB109 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 18 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB110 | Prevention of Dual-Mode Excitation in 9-Cell Cavities for LCLSII-HE | 852 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. Dual-Mode Excitation, also referred to as mode-mixing, is a superposition of two pi modes in an SRF cavity. In 9-cell TESLA cavities used for the LCLSII-HE project, the two modes that are commonly excited are the pi mode (1300.2 MHz), and the 7/9 pi mode (1297.8 MHz). During vertical cavity qualification testing, it is regularly observed that emitted power at the frequency of the 7/9 pi mode grows, despite the RF system only driving the pi mode. When this happens, the RF power measurement system is unable to differentiate between the superimposed modes which invalidates any data taken. A new RF control solution prevents the 7/9 pi mode from being excited. A second RF control system is connected to drive the 7/9 pi mode. The loop phase for driving this mode is determined, then shifted by 180 degrees, thus providing a negative feedback to the undesired mode. Because this off-resonance power can be very small, it does not interfere with the high-power measurements of the fundamental pi mode. At Jefferson Lab, we are now able to test a cavity for the LCLSII-HE project with no complications from mode-mixing, which allows for CW processing of high-gradient multipacting. |
||
Poster WEPWB110 [1.818 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB110 | |
About • | Received ※ 19 June 2023 — Revised ※ 25 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 13 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB128 | Experimental Study of Mechanical Dampers for the FRIB β=0.041 Quarter-Wave Resonators | 898 |
SUSPB036 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award numbers DE-SC0018362 and DE-SC0000661 and Michigan State University. The ’pendulum’ mechanical mode of quarter-wave resonators (QWR) often causes an issue with microphonics and/or ponderomotive instability unless otherwise the inner conductors are properly stiffened and/or damped. FRIB QWRs are equipped with a Legnaro-style frictional damper installed inside of the inner conductor such that it counteracts the oscillations of the inner conductor. In cryomodule tests and linac operation, we observed that the damping efficiency is different for a few β=0.041 QWRs. This study aimed to experimentally characterize the damping efficacy as a function of damper mass and surface roughness. We present damping measurements at room temperature and at two different masses and surface roughness as well as discuss future studies for damper re-optimization based on this follow-on study. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB128 | |
About • | Received ※ 20 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |