# NUMERICAL CALCULATIONS OF SUPERHEATING FIELD IN SUPERCONDUCTORS WITH NANOSTRUCTURED SURFACES\*

W. P. M. R. Pathirana<sup>1†</sup>, A. Gurevich<sup>2‡</sup>

<sup>1</sup>Department of Physics and Astronomy, Virginia Military Institute, Lexington, VA, USA, <sup>2</sup>Department of Physics and Center for Accelerator Science, Old Dominion University, Norfolk, USA

# Abstract

We report calculations of a dc superheating field  $H_{sh}$  in superconductors with nanostructured surfaces. Particularly, numerical simulations of the Ginzburg-Landau (GL) equations were performed for a superconductor with an inhomogeneous impurity concentration, a thin superconducting layer on top of another superconductor, and S-I-S multilayers. The superheating field was calculated taking into account the instability of the Meissner state with a nonzero wavelength along the surface, which is essential for realistic values of the GL parameter  $\kappa$ . Simulations were done for the materials parameters of Nb and Nb<sub>3</sub>Sn at different values of  $\kappa$  and the mean free paths. We show that the impurity concentration profile at the surface and thicknesses of S-I-S multilayers can be optimized to reach  $H_{sh}$  exceeding the bulk superheating fields of both Nb and Nb<sub>3</sub>Sn. For example, a S-I-S structure with 90 nm thick Nb<sub>3</sub>Sn layer on Nb can boost the superheating field up to  $\approx 500$  mT, while protecting the SRF cavity from dendritic thermomagnetic avalanches caused by local penetration of vortices.

# INTRODUCTION

The superconducting radio-frequency (SRF) resonant cavities are crucial components of particle accelerators enabling high accelerating gradients with minimal power consumption. The best Nb cavities can have high quality factors  $Q \sim 10^{10} - 10^{11}$  and sustain accelerating fields up to 50 MV/m at T = 1.5 - 2 K and 1.3 - 2 GHz [1, 2]. The peak fields  $B_0 \simeq 200 \,\mathrm{mT}$  at the equatorial surface of Nb cavities approach the thermodynamic critical field  $B_c \approx 200 \,\mathrm{mT}$ at which the screening rf current density flowing at the inner cavity surface is close to the depairing current density  $J_c \simeq B_c/\mu_0 \lambda$  - the maximum dc current density a superconductor can carry in the Meissner state [3], where  $\lambda$  is the London penetration depth. Thus, the breakdown fields of the best Nb cavities have nearly reached the dc superheating field  $B_{sh} \simeq B_c$  [4–7]. The Q factors can be increased by materials treatments such as high temperature annealing followed by low temperature baking which not only increase  $Q(B_0)$  and the breakdown field but also reduce deterioration of Q at high fields [8,9]. High temperature treatments combined with the infusion of nitrogen, titanium or oxygen can

‡ gurevich@odu.edu

produce an anomalous increase of  $Q(B_0)$  with  $B_0$  [10–13]. These advances raise the question about the fundamental limit of the breakdown fields of SRF cavities and the extent to which it can be pushed by surface nano-structuring and impurity management [2, 14].

Several ways of increasing dc superheating field by surface nanostructuring without detrimental reduction of the field onset of dissipative penetration of vortices have been proposed, including high- $T_c$  superconducting multilayers with thin dielectric layers [15–19] or a dirty overlayer with a higher concentration of nonmagnetic impurities at the surface [20]. Dc superheating field of such structures has been evaluated using the London, Ginzburg-Landau and Usadel equations in the limit of  $\kappa \to \infty$  in which the breakdown of the Meissner state at  $H = H_{sh}$  occurs uniformly along the planar surface. Yet it has been well established that the breakdown of the Meissner state at  $H = H_{sh}$  occurs via a periodic modulation of the order parameter with a wavelength ~  $(\xi^3 \lambda)^{1/4}$  along the surface [5,6]. The effect of such periodic instability on  $H_{sh}$  can be particularly important for Nb cavities with  $\kappa \sim 1$ . Addressing the effect of  $\kappa$ (which in turn depends on the mean free path l) on  $H_{sh}$  in superconductors with a nanostructured surface is the goal of this work.

We present results of numerical calculations of  $H_{sh}$  for different superconducting geometries in materials with finite  $\kappa$ , and determine the optimal surface nanostructure that can withstand the maximum magnetic field. In particular we consider a bulk superconductor with a thin impurity diffusion layer, a clean superconducting overlayer separated by an insulating layer from the bulk (e.g., Nb<sub>3</sub>Sn-I-Nb<sub>3</sub>Sn), a thin dirty superconducting layer on top of the same superconductor (e.g., dirty Nb<sub>3</sub>Sn-I-clean Nb<sub>3</sub>Sn), and a thin high- $T_c$  superconducting layer on top of a low- $T_c$  superconductor (e.g., Nb<sub>3</sub>Sn-I-Nb). We calculate  $H_{sh}$  and determine the optimal layer thickness for each geometry by numerically solving the Ginzburg-Landau (GL) equations using COMSOL [21].

# GINZBURG-LANDAU THEORY AND NUMERICAL CALCULATION OF H<sub>sh</sub>

We first consider a semi-infinite uniform superconductor in a magnetic field  $H_0$  applied along the *z* axis, parallel to the planar surface. In this case the GL equations can be reduced to two coupled partial differential equations for the amplitude  $\Delta(x, y, t)$  of the complex order parameter  $\psi = \Delta e^{i\theta}$  and the *z*-component of the magnetic field H(x, y, t). It is convenient

Fundamental SRF research and development

<sup>\*</sup> This work was supported by DOE under Grant DE-SC 100387-020 and by Virginia Military Institute (VMI) under Jackson-Hope Grant for faculty travel and Jackson-Hope Funds for New Directions in Teaching and Research Grants (Quantum Initiative in Undergraduate Education at VMI).
<sup>†</sup> walivepathiranagemr@vmi.edu

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2023). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI

to write these equations in the following dimensionless form:

$$\dot{f} - f + f^3 - \nabla^2 f + \frac{\kappa^2}{f^3} \left[ \left( \partial_x h \right)^2 + \left( \partial_y h \right)^2 \right] = 0, \quad (1)$$

$$\nabla \cdot \left(\frac{\nabla h}{f^2}\right) = \frac{h}{\kappa^2}.$$
 (2)

Here  $f = \Delta/\Delta_0$ ,  $\Delta_0(T)$  is the equilibrium order parameter in the bulk,  $h = H/\sqrt{2}H_c$ , all lengths are in units of the coherence length  $\xi$ , and  $\kappa = \lambda/\xi$  is the GL parameter. Note that, despite the presence of the time derivative  $\dot{f}$  in Eqs. (1) and (2), they are in fact quasi-static GL equations but not the true time-dependent GL equations [22, 23] which describe a nonequilibrium superconductor at  $T \approx T_c$ . Here  $\dot{f}$  was added in order to detect the instability of the Merissner state at  $H + 0 = H_{sh}$  in numerical simulations upon slow ramping the applied magnetic field  $H_0(t)$ .

Equations (1) and (2) were solved numerically with the following boundary conditions:

$$h(0, y) = h_0(t),$$
  

$$h(x, 0) = h(x, L_y), f(x, 0) = f(x, L_y),$$
  

$$f(L_y, y) = 1, h(L_y, y) = 0,$$
  
(3)

where  $h_0 = H_0/\sqrt{2}H_c$ , the lengths  $L_x$  and  $L_y$  of the simulation box  $L_x \times L_y$  were chosen to be ~  $10^4 \xi$ . Ramping the magnetic field was implemented by  $h_0(t) = \theta(t-t_0)(m_1t_0 + m_2(t-t_0)) + m_1t\theta(t_0 - t)$ , where  $\theta(t)$  is the Heaviside step function,  $m_1 = 0.01$ ,  $m_2 = 0.00005$  and  $t_0$  was chosen such that  $H_0(t_0) < H_{sh}$ .

Shown in Figs. 1(a) - 1(b) are the order parameters f(x, y)calculated at  $\kappa = 10$  and the applied field  $H_0$  being slightly below and above  $H_{sh}$ . At  $H_0 < H_{sh}$  there is a gradual reduction of f(x) by the screening current density at the surface. At  $H_0 > H_{sh}$  the stationary distribution of f(x)becomes unstable with respect to growing periodic modulations shown in Fig. 1(b). This instability occurs at a finite wavelength  $\lambda_c = 2\pi/k_c$ , small disturbance of the order parameter initially growing exponentially with time  $\delta f(x, y, t) \propto \delta f(x) e^{ik_c y + \Gamma t}$  with  $\Gamma > 0$ . When calculating  $H_{sh}$ , the program was set to stop at  $|f_{max}(0, y) - \overline{f}| \approx 10^{-4}$ , where  $f_{max}(0, y)$  and  $\bar{f}$  are the maximum and averaged values of f(x, y) at the surface x = 0. Here  $\lambda_c$  was obtained from the maximum peak in the spatial Fourier transform of  $\delta f(0, y)$  shown in Fig. 2. The instability is a precursor of penetration of vortex structure with the initial period  $\lambda_c \sim (\xi^3 \lambda)^{1/4}$  smaller than the stationary vortex spacing ~  $\sqrt{\lambda\xi}$  at  $H_0 \simeq H_{sh}$ . Analytical approximation for  $H_{sh}$  and  $k_c$  at  $\kappa \gg 1$  are given by [5,6]:

$$\frac{H_{sh}}{H_{c}} \approx \frac{\sqrt{5}}{3} + \frac{0.545}{\kappa},\tag{4}$$

$$\lambda k_c \approx 0.956 \kappa^{3/4}.$$
 (5)

# **IMPURITY DIFFUSION LAYER**

Consider a dirty layer at the surface with an inhomogeneous impurity concentration as shown in Fig. 3. In our

## Fundamental SRF research and development

#### Film coated copper cavities; multi-layer films



Figure 1: Order parameter calculated at  $\kappa = 10$ ,  $H_0 = H_{sh} - 0$  (a) and  $H_0 = H_{sh} + 0$  (b).



Figure 2: A snapshot of  $\delta f(y)$  at x = 0 and  $H_0 = H_{sh} + 0$ 

simulations such layer was modeled by a spatially varying coherence length  $\xi^2(x)/\xi_{\infty}^2 = 1 - \alpha \exp(-x/l_d)$ , where  $\xi_{\infty}$ 



Figure 3: An impurity diffusion layer at the surface shown by the dark gray contrast.

is a bulk coherence length far away from the surface,  $l_d$  is a thickness of the diffusion layer and  $\alpha < 1$  quantifies the reduction of  $\xi(0) = (1 - \alpha)^{1/2} \xi_{\infty}$  at the surface. The resulting GL equations take the form

$$\dot{f} = f - f^3 + \nabla \cdot \left(S_{\gamma} \nabla f\right) - \frac{\kappa^2}{S_{\gamma} f^3} \left[ \left(\partial_x h\right)^2 + \left(\partial_y h\right)^2 \right], \quad (6)$$

$$\nabla \cdot \left(\frac{\nabla h}{f^2}\right) = \frac{S_{\gamma}}{\kappa^2} h + \frac{1}{S_{\gamma} f^2} \left(\partial_x S_{\gamma} \cdot \partial_x h\right), \tag{7}$$

where  $\kappa = \lambda_{\infty}/\xi_{\infty}$ ,  $S_{\gamma} = \xi^2(x)/\xi_{\infty}^2 = 1 - \alpha \exp(-x/l_d)$ , and the lengths are in units of  $\xi_{\infty}$ . The boundary conditions are the same as in Eq. (3). Different impurity profiles were investigated by changing  $\alpha$  and  $l_d$  using  $\kappa = 2$  and  $\kappa = 10$ as representative values for clean and dirty Nb.



Figure 4:  $H_{sh}$  vs  $l_d$  for different  $\alpha$  at  $\kappa = 2$ .



Figure 5:  $H_{sh}$  vs  $l_d$  for different  $\alpha$  at  $\kappa = 10$ .

The calculated dependencies of  $H_{sh}(l_d)$  on the diffusion layer thickness at different  $\alpha$  for  $\kappa = 2$  and  $\kappa = 10$  are shown in Figs. 4 and 5, respectively. One can see that  $H_{sh}(l_d)$  first increases with  $l_d$ , reaches a maximum and then decreases with  $l_d$  approaching a lower value of  $H_{sh}$  at  $l_d \gg \xi_{\infty}$ . At  $\kappa = 2$ ,  $H_{sh}(l_d)$  is maximum at  $l_d = 0.8\xi_{\infty}, 0.9\xi_{\infty}, 1.5\xi_{\infty}$ for  $\alpha = 0.2, 0.5, 0.8$ , respectively. Likewise at  $\kappa = 10 H_{sh}$ is maximum at  $l_d = 4\xi_{\infty}, 5\xi_{\infty}, 10\xi_{\infty}$ . Here the diffusion layer can increase  $H_{sh}$  by  $\approx 9\%$  at  $\kappa = 2$  and by  $\approx 14\%$ at  $\kappa = 10$  as compared to a superconductor with an ideal surface.

# S-I-S STRUCTURES

We have considered three different S-I-S structures: an S layer of thickness *d* separated by an insulator from the S substrate, a thin dirty S layer on top of a cleaner superconductor

#### **MOPMB019**

(e.g., dirty Nb - I - clean Nb) and a thin high  $T_c$  overlayer on top of a low  $T_c$  superconductor (e.g., Nb<sub>3</sub>Sn-I-Nb). Here the I-layer is assumed to be thick enough to fully suppress the Josephson coupling between the S overlayer and the bulk. The geometry is shown in Fig. 6.



Figure 6: S-I-S geometry. The black line represents and insulating layer while gray and light gray ares represent bulk superconductor and thin superconducting overlayer.

#### S Overlayer on Top of the Same S-substrate

The GL equations Eqs. (1) and (2) were solved in both S-domains with the boundary conditions (Eq. (3)) supplemented by the conditions of continuity of h(d + 0, y) = h(d - 0, y) and zero current  $\partial_y h(d + 0) = \partial_y h(d - 0) = 0$  through the I layer.



Figure 7:  $H_{sh}$  vs d for the case of Nb<sub>3</sub>Sn-I-Nb<sub>3</sub>Sn,

Shown in Fig. 7 is  $H_{sh}$  as a function of the thickness of the S overlayer *d* calculated at  $\kappa = 17$  representing Nb<sub>3</sub>Sn. Here  $H_{sh}(d)$  is reduced in a very thin S layer and gradually increases with *d* reaching the bulk value of  $H_{sh}$  at  $d > 9\xi_2$ , where  $\xi_2$  is the coherence length in the S-substrate.

## Dirty S Overlayer on S-substrate

Superconductivity in the bulk is described by the following GL equations

$$\dot{f}_{2} = \nabla^{2} f_{2} + f_{2} - f_{2}^{3} - \frac{\kappa_{2}^{2}}{f_{2}^{3}} \left[ \left( \partial_{x} h_{2} \right)^{2} + \left( \partial_{y} h_{2} \right)^{2} \right], \quad (8)$$

$$\nabla \cdot \left(\frac{\nabla h_2}{f_2^2}\right) = \frac{h_2}{\kappa_2^2},\tag{9}$$

where the lengths and the order parameter are in units of their respective bulk values of  $\xi_2$  and  $\Delta_2$ . In turn, the GL

Fundamental SRF research and development Film coated copper cavities; multi-layer films equations in the overlayer are:

$$\dot{f}_{1} = f_{1} - f_{1}^{3} + \frac{\xi_{1}^{2}}{\xi_{2}^{2}} \nabla^{2} f_{1} - \frac{\xi_{1}^{2}}{\xi_{2}^{2}} \frac{\kappa_{1}^{2}}{f_{1}^{3}} \left[ \left( \partial_{x} h_{1} \right)^{2} + \left( \partial_{y} h_{1} \right)^{2} \right],$$
(10)

$$\nabla \cdot \left(\frac{\nabla h_1}{f_1^2}\right) = \frac{h_1 \xi_2^2}{\xi_1^2 \kappa_1^2}.$$
 (11)

Equations (8)-(11) were solved for a dirty Nb<sub>3</sub>Sn overlayer on a cleaner Nb<sub>3</sub>Sn using l = 2 nm,  $\lambda \approx \lambda_0 (\xi_0/l)^{1/2} \approx$ 135 nm,  $\xi \approx (l\xi_0)^{1/2} \approx 3$  nm,  $\kappa_1 = 45$  in the overlayer and  $\kappa_2 = 17$  in the bulk Nb<sub>3</sub>Sn.



Figure 8:  $H_{sh}$  vs d for a Nb<sub>3</sub>Sn(dirty)-I-Nb<sub>3</sub>Sn structure.

Shown in Fig. 8 is the calculated dependence of  $H_{sh}$  on the overlayer thickness which has a maximum at the optimum thickness  $d_m \approx 9\xi_2$ . Such optimal dirty overlayer can increase  $H_{sh}$  by about 10% as compared to the bulk  $H_{sh}$ . The behavior of  $H_{sh}(d)$  at a finite  $\kappa$  turns out to be similar to that was calculated from the London and GL theories in the limit of  $\kappa \to \infty$  in which the enhancement of  $H_{sh}$  at  $d \approx d_m$  results from the counterflow induced by the substrate in the overlayer with a larger  $\lambda$  [16, 19]. Here the cusp-like dependence of  $H_{sh}(d)$  is controlled by the instability of the Meissner state in the substrate at  $d < d_m$  and by the instability of the Meissner state in the overlayer at  $d > d_m$ , the overlayer partly screening the substrate and allowing it to withstand external fields higher than the bulk  $H_{sh}$ .

# *High-T<sub>c</sub>* Superconducting Overlayer

A high- $T_c$  superconducting layer on top of a low- $T_c$  substrate is described by the following GL equations

$$\dot{f}_{1} = \zeta f_{1} - f_{1}^{3} + s \nabla^{2} f_{1} - \frac{\tilde{\kappa}^{2}}{f_{1}^{3}} \left[ \left( \partial_{x} h_{1} \right)^{2} + \left( \partial_{y} h_{1} \right)^{2} \right], \quad (12)$$

$$\nabla \cdot \left(\frac{\nabla h_1}{f_1^2}\right) = \frac{\lambda_2^2 h_1}{\lambda_1^2 \zeta \kappa_2^2},\tag{13}$$

$$\zeta = \frac{1 - T/T_{c1}}{1 - T/T_{c2}}, \qquad s = \frac{\xi_1^2}{\xi_2^2}\zeta, \qquad \tilde{\kappa}^2 = \frac{\xi_1^2 \lambda_1^4}{\xi_2^2 \lambda_2^4} \kappa_2^2 \zeta^3, \tag{14}$$

where  $T_{c1}$  and  $T_{c2}$  are the critical temperatures of the overlayer and the substrate, respectively. Equations (12)-(14) are supplemented by Eqs. (1) and (2) in the S substrate, the boundary conditions (3) and the conditions of field continuity and zero current through the I layer.

Fundamental SRF research and development



Figure 9:  $H_{sh}$  vs d for the case of Nb<sub>3</sub>Sn-I-Nb.

We solved the GL equations for a Nb<sub>3</sub>Sn overlayer on a bulk Nb using  $\kappa_2 = 50/22$  [24] and  $\kappa_1 = 17$ . The calculated superheating field  $H_{sh}(d)$  shown in Fig. 9 has a maximum at  $d_m \approx 4\xi_2$ . Here  $H_{sh}(d)$  at  $d < d_m$  is limited by the instability of the Meissner state in Nb partly screened by the Nb<sub>3</sub>Sn overlayer, while  $H_{sh}$  at  $d > d_m$  is determined by the superheating field of Nb<sub>3</sub>Sn enhanced at  $d_m \approx 88$  nm by the counterflow caused by the Nb substrate. The instability wave vectors  $k_c$  in Nb and Nb<sub>3</sub>Sn are described reasonably well by Eq. (5). Such Nb<sub>3</sub>Sn-I-Nb structure with  $d \ge d_m$  can boost the superheating field up to ~ 2.2 times higher than the bulk  $H_{sh}$  of Nb. Here the I layer blocks penetration of vortices in the bulk Nb and does not let them develop into thermomagnetic avalanches triggering a global superconductivity breakdown in the cavity.

## CONCLUSION

In this work we have used the Ginzburg-Landau theory to study the influence of impurity profiles and high- $T_c$  superconducting layers on the dc superheating field in S-S and S-I-S structures. Unlike the previous calculations of  $H_{sh}$ done in the limit of  $\kappa \to \infty$ , our numerical simulations cover the entire range of  $1 < \kappa < \infty$  and account for the instability  $H = H_{sh}$  at a finite wave number  $k_c$  particularly important for Nb with  $\kappa \sim 1$ . We show that there are optimum thicknesses of the impurity diffusion layer and the superconducting overlayer which maximize  $H_{sh}$ . For instance, optimizing the diffusion length can enhance  $H_{sh}$  by  $\simeq 5 - 20\%$  at  $\kappa = 10$ and by  $\simeq 2 - 9\%$  at  $\kappa = 2$ . An optimized dirty overlayer, such as a Nb<sub>3</sub>Sn layer deposited on Nb<sub>3</sub>Sn, can enhance the superheating field by  $\approx 10\%$  as compared to  $H_{sh}$  of a clean Nb<sub>3</sub>Sn. A S-I-S structure comprised of a Nb<sub>3</sub>Sn overlayer on Nb can boost the superheating field by approximately 2.2 times as compared to  $H_{sh}$  of Nb. A dynamic superheating field at  $T \approx T_c$  at rf frequencies can be by a factor  $\sqrt{2}$ larger [23] than the quasistatic  $H_{sh}$  considered here. The results of this work can contribute to the understanding and optimization of SRF cavities to achieve higher accelerating gradients.

#### ACKNOWLEDGMENTS

This work was supported by DOE under Grant DE-SC 100387-020 and by Virginia Military Institute (VMI) under Jackson-Hope Grant for faculty travel and Jackson-Hope

117

Funds for New Directions in Teaching and Research Grants (Quantum Initiative in Undergraduate Education at VMI).

## REFERENCES

- H. Padamsee, J. Knobloch, and T. Hays, *RF superconductivity for accelerators*. Second Ed. Wiley, ISBN:978-3-527-40842-9, 2008.
- [2] A. Gurevich, "Tuning microwave losses in superconducting resonators", *Supercond. Sci. Technol.*, vol. 36, p. 063002, 2023. doi:10.1088/1361-6668/acc214
- [3] M. Tinkham, *Introduction to superconductivity*, Dover Publ., Mineola, NY, USA, 2004.
- [4] J. Matricon and D. Saint-James, "Superheating fields in superconductors", *Phys. Lett. A*, vol. 24, pp. 241–242, 1967. doi:10.1016/0375-9601(67)90412-4
- [5] S. J. Chapman, "Superheating field of type II superconductors", SIAM J. Appl. Math., vol. 55, pp. 1233–1258, 1995.
- [6] M. K. Transtrum, G. Catelani, and J. P. Sethna, "Superheating field of superconductors within Ginzburg-Landau theory", *Phys. Rev. B*, vol. 83, p. 094505, 2011. doi:10.1103/PhysRevB.83.094505
- [7] F. P. J. Lin and A. Gurevich, "Effect of impurities on the superheating field of type-II superconductors", *Phys. Rev. B*, vol. 85, p. 054513, 2012.
   doi:10.1103/PhysRevB.85.054513
- [8] G. Ciovati *et al.*, "High field Q slope and the baking effect: Review of recent experimental results and new data on Nb heat treatments", *Phys. Rev. Accel. Beams*, vol. 13, 2010. doi:10.1103/PhysRevSTAB.13.022002
- [9] S. Posen, A. Romanenko, A. Grassellino, O. Melnychuk, and D. Sergatskov, "Ultralow surface resistance via vacuum heat treatment of superconducting radio-frequency cavities", *Phys. Rev. Appl.*, vol. 13, no. 1, p. 014024. doi10.1103/PhysRevApplied.13.014024
- [10] G. Ciovati, P. Dhakal, and G. R. Myneni, "Superconducting radio-frequency cavities made from medium and low-purity niobium ingots", *Supercond. Sci. Technol.*, vol. 29, p. 064002, 2016. doi:10.1088/0953-2048/29/6/064002
- [11] A. Grassellino *et al.*, "Unprecedented quality factors at accelerating gradients up to 45 MVm<sup>-1</sup> in niobium superconducting resonators via low temperature nitrogen infusion", *Supercond. Sci. Technol.*, vol. 30, p. 094004, 2017. doi:10.1088/1361-6668/aa7afe
- [12] E. M. Lechner, J. W. Angle, F. A. Stevie, M. J. Kelley, C. E. Reece, and A. D. Palczewski, "RF surface resistance tuning of superconducting niobium via thermal diffusion of native oxide", *Appl. Phys. Lett.*, vol. 119, p. 082601, 2021. doi:10.1063/5.0059464

- P. Dhakal, "Nitrogen doping and infusion in SRF cavities: A review", *Phys. Open*, vol. 5, p. 100034, 2020. doi:10.1016/j.physo.2020.100034
- [14] A. Gurevich and T. Kubo, "Surface impedance and optimum surface resistance of a superconductor with an imperfect surface", *Phys. Rev. B*, vol. 96, p. 184515, 2017. doi:10.1103/PhysRevB.96.184515
- [15] A. Gurevich, "Enhancement of rf breakdown field of superconductors by multilayer coating", *Appl. Phys. Lett.*, vol. 88, p. 012511, 2006. doi:10.1063/1.2162264
- [16] A. Gurevich, "Maximum screening fields of superconducting multilayer structures", *AIP Adv.*, vol. 5, p. 017112, 2015. doi:10.1063/1.4905711
- [17] D. B. Liarte, S. Posen, M. K. Transtrum, G. Catelani, M. Liepe, and J. P. Sethna, "Theoretical estimates of maximum fields in superconducting resonant radio frequency cavities: stability theory, disorder, and laminates", *Supercond. Sci. Technol.*, vol. 30, p. 033002, 2017. doi:10.1088/1361-6668/30/3/033002
- [18] T. Kubo, "Multilayer coating for higher accelerating fields in superconducting radio-frequency cavities: a review of theoretical aspects", *Supercond. Sci. Technol.*, vol. 30, p. 023001, 2017. doi:10.1088/1361-6668/30/2/023001
- [19] T. Kubo, "Superheating fields of semi-infinite superconductors and layered superconductors in the diffusive limit: structural optimization based on the microscopic theory", *Supercond. Sci. Technol.*, vol. 34, p. 045006, 2021. doi:10.1088/1361-6668/abdedd
- [20] V. Ngampruetikorn and J. A. Sauls, "Effect of inhomogeneous surface disorder on the superheating field of superconducting RF cavities", *Phys. Rev. Res.*, vol. 1, p. 012015, 2019. doi:10.1103/PhysRevResearch.1.012015
- [21] COMSOL Multiphysics Modeling Software, https://www.comsol.com
- [22] R. J. Watts-Tobin, Y. Krähenbühl, and L. Kramer, "Nonequilibrium theory of dirty, current-carrying superconductors: phase-slip oscillators in narrow filaments near T<sub>c</sub>", *J. Low Temp. Phys.*, vol. 42, p. 459, 1981. doi:10.1007/BF00117427
- [23] A. Sheikhzada and A. Gurevich, "Dynamic pair-breaking current, critical superfluid velocity, and nonlinear electromagnetic response of nonequilibrium superconductors", *Phys. Rev. B*, vol. 102, p. 104507, 2020. doi:10.1103/PhysRevB.102.104507
- [24] S. Posen and D. L. Hall, "Nb<sub>3</sub>Sn superconducting radiofrequency cavities: fabrication, results, properties, and prospects", *Supercond. Sci. Technol.*, vol. 30, p. 033004, 2017. doi:10.1088/1361-6668/30/3/033004

118