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Abstract
Experiments on superconducting cavities have found that

under large RF fields the quality factor can improve with
increasing field amplitude, a so-called “anti-Q slope.” We
numerically solve the Bogoliubov-de Gennes equations at
a superconducting surface in a parallel magnetic field, find-
ing at large fields there are surface quasiparticle states with
energies below the bulk superconducting gap that emerge
and disappear as the field cycles. Modifying the standard
two-fluid model, we introduce a “three”-fluid model where
we partition the normal fluid to consider continuum and sur-
face quasiparticle states separately. We compute dissipation
in a semi-classical theory of conductivity, where we provide
physical estimates of elastic scattering times of Bogoliubov
quasiparticles with point-like impurities having potential
strengths informed from complementary ab initio calcula-
tions of impurities in bulk niobium. We show, in this simple
yet effective framework, how the relative scattering rates of
surface and continuum quasiparticle states can play a role
in producing an anti-Q slope while demonstrating how this
model naturally includes a mechanism for turning the anti-Q
slope on and off.

INTRODUCTION
Superconducting radio-frequency (SRF) cavities are use-

ful in a variety of modern applications, such as free-electron
lasers and particle accelerators [1]. The primary advan-
tage of using superconducting materials over their normal-
conducting alternatives is a lower surface resistance, which
comes with the benefits of lower operating costs and a lower
energy footprint [2]. Despite decades of steady improve-
ments, leading to quality factors in the neighborhood of
1010 [1] and accelerating fields up to 25–45 MV/m [2], some
open research questions remain. As the accelerating field
increases there is often what is referred to as a “𝑄 slope,”
meaning a quality factor that decreases—or, equivalently, a
surface resistance that increases—as the accelerating field
increases. However, recently some cavities, in particular
niobium cavities doped with nitrogen, have been observed to
produce a so-called “anti-𝑄 slope,” referring to a quality fac-
tor that perplexingly increases with the accelerating field [1].
Further observations of this phenomenon include stronger
anti-𝑄 slopes when increasing the resonant frequency of
the cavity [3], yet, definitive theoretical explanations for the
anti-𝑄 slope remain elusive.

Conventional theories of AC dissipation in superconduc-
tors predict quality factors that remain constant as the acceler-

ating field increases, i.e. no 𝑄 slope. Mattis and Bardeen [4]
applied linear response methods to BCS theory [5] to yield an
expression for the complex conductivity of a superconductor
subject to a magnetic field. (Here we ignore other sources of
dissipation such as trapped magnetic vortices oscillating near
the cavity surface [6–8] and within grain boundaries [9, 10].)
The result they found was a surface resistance that roughly
goes as 𝜔2 exp(−Δ/𝑘𝐵𝑇) at low temperatures, where Δ is
the superconducting gap and 𝜔 is the angular frequency of
the oscillating field. Central to these calculations is the idea
that a quasiparticle in a state with energy 𝐸1 transitions to a
state of energy 𝐸2 = 𝐸1 + ℏ𝜔 upon absorbing a photon of
energy ℏ𝜔. In order for the photon energy to be well defined
the absorption must happen coherently over many cycles of
the AC perturbation.

Extensions of the linear-response theory of Ref. [4] have
been routinely implemented in order to interpret experimen-
tal data exhibiting anti-𝑄 slopes. Applying the Keldysh for-
malism in the context of non-equilibrium Green’s functions,
Gurevich rederived the expression for the conductivity to
evaluate the surface resistance at low frequencies, low mean
free paths, and high magnetic fields [11]. There, the anti-𝑄
slope originates from the smearing of the quasiparticle den-
sity of states in the presence of an oscillating superflow. At
high enough fields, the superconducting gap decreases and
the density of states smears to weaken the zero-frequency
singularity from the Mattis-Bardeen expression, which even-
tually leads to a field dependent surface resistance. This
calculation involves an approximate nonequilibrium quasi-
particle distribution function, a key quantity that is difficult
to find when working with fundamental theories. Goldie and
Withington obtained non-linear solutions to the kinetic equa-
tions for the coupled quasiparticle and phonon systems [12].
Later, their solutions for the non-thermal quasiparticle dis-
tribution function were combined with the Mattis-Bardeen
theory when by de Visser et al. proposed a mechanism
for microwave suppression on superconducting aluminum
resonators [13].

Though some of these extensions can be used in the
regimes of strong fields [11, 14], they conceptualize the
notion of 𝐸1 → 𝐸2 = 𝐸1 + ℏ𝜔. At large enough fields,
however, we shall see that there are quasiparticle surface-
states with energies that change dramatically during each
cycle of the AC field. The situation we introduce here is
reminiscent of the smeared density of states in Ref. [11], ex-
cept we include explicitly the depth and time dependence of
both the superconducting gap and the quasiparticle states. In
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particular, we find that 𝐸2(𝑡) − 𝐸1(𝑡) is not constant for such
states, which makes the expression 𝐸2 = 𝐸1 +ℏ𝜔 unreliable.
This distinction demands a new framework to handle such
quasiparticle states in strong AC fields. Rather than con-
sidering transitions occurring coherently over many cycles
in the weak-coupling limit, we take the opposite limit and
consider scattering events occurring within a single cycle
and ultimately solve the same quantum dissipation problem
but starting from the adiabatic limit.

In the following section, we introduce the Bogoliubov-de
Gennes equations and describe quasiparticle surface states
whose energies exhibit strong field dependence. And then
we discuss how to incorporate the quasiparticle states with
changing energies into a modified version of the two-fluid
model. And then we compute the field and frequency depen-
dence of our dissipation mechanism and discuss its relevance
to the anti-𝑄 slope. Finally, in summary, we offer concluding
remarks and possibilities for further study.

THE BOGOLIUBOV-DE GENNES
SELF-CONSISTENT FIELD METHOD

To find quasiparticle states we solve the Bogoliubov-de
Gennes (BdG) self-consistent field equations [15]:

(𝐻𝑒 + 𝑈)𝑢 + Δ𝑣 = 𝐸𝑢
−(𝐻∗

𝑒 + 𝑈)𝑣 + Δ∗𝑢 = 𝐸𝑣
(1)

with
𝐻𝑒(r) = (−𝑖ℏ∇ − 𝑒A(r))2/2𝑚 − 𝐸F,

where 𝑒 is the fundamental charge, 𝑚 is the mass of an
electron, and 𝐸F is the Fermi energy. These equations must
be solved self-consistently with the potentials given by

𝑈 = −𝑉 ∑
𝑛

|𝑢𝑛|2𝑓𝑛 + |𝑣𝑛|2(1 − 𝑓𝑛)

Δ = 𝑉 ∑
𝑛

𝑢𝑛𝑣∗
𝑛(1 − 2𝑓𝑛),

(2)

where 𝑓𝑛 is the occupancy of state 𝑛 and 𝑉 is a constant de-
scribing the strength of the interaction. The expression for
𝑈 corresponds to a Hartree-Fock potential that scales with
the electronic density. To avoid simulating a semi-infinite
half-space, we limit the domain to a depth 𝐿 and employ
a hard-wall potential at 𝑧 = 0. Provided 𝐿 ≫ 𝜆, this trun-
cation does not affect the energies of states localized near
the surface. Solving these expressions numerically begins
with an initial guess for the potentials, solving for (𝑢𝑛, 𝑣𝑛)
and subsequently refining the estimated potentials, and it-
erating until the process settles on consistent solutions for
(𝑢𝑛, 𝑣𝑛), 𝑈, and Δ. Note that Eqs. (1) possess a symmetry:
If (𝑢, 𝑣) is a solution with energy 𝐸, (𝑣∗, −𝑢∗) is a solution
with energy −𝐸. Taking advantage of this symmetry requires
also replacing the state’s occupation 𝑓 with 1 − 𝑓 to preserve
Eqs. (2). In that case, some quasiparticles states as treated
as ‘quasi-holes’ with opposite energy and occupation.

We solve Eqs. (1) at the surface of a superconductor in
a parallel magnetic field: A = 𝐴0 sin(𝜔𝑡)𝑒−𝑧/𝜆 ̂𝑦, where 𝜆

gives the London penetration depth of the superconductor
and ̂𝑧 is parallel to the surface normal. We treat 𝜆 as constant
because 𝜆 does not change significantly for RF fields below
𝐻𝑐1 [16]. We choose to impose the vector potential exter-
nally, rather than using the current density and Maxwell’s
equations to solve for a new vector potential after each itera-
tion of the self-consistency process, but we confirm that our
current density is consistent with our vector potential after
reaching self-consistency with 𝑈 and Δ.

Factoring out the dependence in the directions parallel
to the surface, 𝑢(r) → 𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦)𝑢(𝑧) and likewise for 𝑣, we
obtain a coupled system of differential equations:

⎧{
⎨{⎩

ℏ2

2𝑚 [𝑘2
𝑥 + (𝑘𝑦 − 𝑒𝐴0

ℏ𝑐 sin(𝜔𝑡)𝑒−𝑧/𝜆)
2

− 𝑑
𝑑𝑧

2
] − 𝐸𝐹 + 𝑈(𝑧)

⎫}
⎬}⎭

𝑢(𝑧) + Δ(𝑧)𝑣(𝑧) = 𝐸𝑢(𝑧),

−
⎧{
⎨{⎩

ℏ2

2𝑚 [𝑘2
𝑥 + (𝑘𝑦 + 𝑒𝐴0

ℏ𝑐 sin(𝜔𝑡)𝑒−𝑧/𝜆)
2

− 𝑑
𝑑𝑧

2
] − 𝐸𝐹 + 𝑈(𝑧)

⎫}
⎬}⎭

𝑣(𝑧) + Δ(𝑧)𝑢(𝑧) = 𝐸𝑣(𝑧),

with 𝑘𝑥 and 𝑘𝑦 as parameters. Since the time dependence of
the field 𝐴0(𝑡) is much slower than quantum relaxation times
(apart from inelastic scattering), we obtain the time depen-
dence of the eigenstates simply by solving these equations
at a series of times.

For boundary conditions we set 𝑢(0) = 𝑢(𝐿) = 𝑣(0) =
𝑣(𝐿) = 0 to confine the quasiparticles to the slab. According
to Eqs. (2), this condition forces the potentials to vanish at
the surface, which may seem to be a problem given that, for
instance, Δ should be a nonzero constant if the field is zero.
However, the relevant length-scale for features of Δ is the
correlation length, while the sums in Eqs. (2) include terms

oscillating on the much shorter length scale of 1/𝑘𝐹. For
niobium, 1/𝑘𝐹 = 0.08 nm [17], about 500 times smaller than
the correlation length of nearly 40 nm [18]. Accordingly,
any oscillations near Δ(𝑧 = 0) are only present within a
tiny fraction of a penetration depth from the surface and are
analagous to Friedel oscillations in electronic densities near
a surface [19]. Others who have studied the Bogoliubov-de
Gennes self-consistent field method near a surface observe
the same phenomenon [20], or a similar phenomenon when
this method applied within a tight-binding model frame-
work [21]. Relatedly, authors studying superconductivity
in thin films and wires have also noted oscillations in the
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energy gap as a function of thickness [22, 23]. It is impor-
tant to distinguish between oscillations in the energy gap
as a function of thickness in a thin film and oscillations in
the pair potential as a function of position in a thick slab or
half-space, but both effects result from boundary conditions.

We use parameters realistic for an elliptical SRF cavity
made from niobium: a Fermi energy of 𝐸𝐹 = 5.32 eV [17],
a bulk gap of Δ0 = 1.5 meV, a penetration depth of 𝜆 =
40 nm, an operating temperature of 2 K, a geometry factor
of 𝐺 = 270 Ω, a frequency of 1.3 GHz, and accelerating
gradients up to 30 MV/m [18]. Such gradients correspond to
magnetic fields of more than half of niobium’s lower critical
field 𝐻𝑐1 at 2 K [24].

DISSIPATION MECHANISM
In the absence of a field, there is a uniform pair potential

Δ(𝑧) = Δ0 and all quasiparticle energies must be larger
than Δ0. Once the field is applied, states localized near
the surface with energies less than Δ0 appear. Additionally,
there is a continuum of states de-localized from the surface
whose energies change negligibly during the cycle.

Because elastic scattering is quick—DFT calculations of
electron–impurity scattering times in niobium suggest an
elastic scattering time of ∼10−12–10−15 s, several orders
of magnitude quicker than typical SRF field frequencies
in the GHz range [25]—we can assume that a state stays
in equilibrium as long as it can scatter elastically with this
reservoir of continuum states. In typical fashion, we take
the states having energies above Δ0 to be in equilibrium,
with occupancies determined by the Fermi-dirac distribution
𝑓𝑛 = (1 + 𝑒𝛽𝐸𝑛)−1 for 𝐸𝑛 ≥ Δ0.

Bound states with energies below Δ0 cannot scatter elas-
tically with continuum states and can be filled only by the
much slower inelastic processes. Because the inelastic scat-
tering rate in niobium of ∼10−8 s is much slower than 𝜔,
the bound states with energies below Δ0 do not have time
to reach equilibrium. Given this relation, along with the
divergence of the quasiparticle density of states at 𝐸 = Δ0,
we take the states having energies below Δ0 to have occupan-
cies determined by 𝑓𝑛 = (1 + 𝑒𝛽Δ0)−1 for 𝐸𝑛 < Δ0. Every
time the field goes to zero, the bound states return to the
continuum and scatter elastically with continuum states. The
process repeats when the field starts to increase again and
bound states reemerge.

Instantaneous dissipation is computed using an Ohmic
relation

𝑃diss(𝑡) = ∫ 𝑑𝑉ℜ [ 1
𝜎(𝑧, 𝑡)] 𝑗2(𝑧, 𝑡), (3)

where 𝜎 gives the complex conductivity of the material,
and the current density is solved from the standard quantum
current-density relation,

j = 1
2𝑚 [(Ψ∗p̂Ψ − Ψp̂Ψ∗) − 2𝑒A|Ψ|2] . (4)

The average power dissipated within a given cycle of the RF
period is evaluated through

⟨𝑃diss⟩RF period = 1
𝑇 ∫

𝑇

0
𝑑𝑡 𝑃diss(𝑡). (5)

After computing the dissipation within an RF cycle over
an infinitesimal area 𝑑𝑠, we find the surface resistance 𝑅s
through

⟨𝑃diss⟩ = 1
2𝑅s ∫ |𝐻|2 𝑑𝑠 (6)

and the quality factor from

𝑄 = 𝜔𝑈
⟨𝑃diss⟩

=
𝜔𝜇0 ∫ |𝐻|2 𝑑𝑣
𝑅s ∫ |𝐻|2 𝑑𝑠

= 𝐺
𝑅s,

(7)

where 𝐺 = 𝜔𝜇0 ∫ |𝐻|2 𝑑𝑣
∫ |𝐻|2 𝑑𝑠 gives the geometry factor, a param-

eter independent of the frequency and size of the SRF cavity.
For example, to double the frequency of a cylindrical cavity,
one must halve the radius of the cavity in order to keep it
in the same waveguide mode, so 𝐺 remains unchanged and
truly is a purely geometrical parameter.

Elastic Scattering of Bogoliubov Quasiparticles
At low temperatures, especially the operating temperature

considered here of 2 K, the electronic relaxation time is
dominated by elastic scattering with impurities [17, 26]. To
simulate the effects of nitrogen-doped surface treatments
in niobium, we calculate impurity scattering rates using a
three-dimensional delta function as the perturbing potential
to model point-like impurities

𝛿𝑉 = 𝛼𝛿(r − r0). (8)

We determine a realistic strength 𝛼 for the scattering poten-
tial from ab initio results of DFT calculations incorporating
nitrogen impurities in bulk niobium and intuitive formulas
derived for a homogeneous electron gas. Specifically, the
impurity scattering rate for pure planewave electronic states
from this delta-function potential is given by

𝜏−1 = 2𝜋
ℏ 𝑛imp𝛼2𝑁(0), (9)

where 𝑁(0) denotes the electronic density of states at the
Fermi level and 𝑛imp is the concentration of impurities. The
Fermi-level density of states is easily deduced from standard
DFT calculations and Wannier interpolation techniques pro-
vide us with impurity scattering rates in bulk niobium as a
function of nitrogen impurity concentration.

With the potential strength deduced, we can then com-
pute elastic scattering rates for the Bogoliubov states we
solve for, which involves a scattering rate formula distinct
from normal-conducting electrons. Accounting for the
broken symmetry at the surface using states of the form
𝑢(r) = 𝐴−1/2𝑒𝑖(k||⋅r||)𝑢(𝑧), the impurity scattering rate for
Bogoliubov quasiparticles is

𝜏−1
𝑛k||

=2𝜋𝐿
ℏ𝐴 ∑

𝑛′k′
||

𝛼2𝑛imp(𝑧0)(1 − 𝑓𝑛′k′
||
)𝛿(𝐸𝑛k||

− 𝐸𝑛′k′
||
)

× |𝑢𝑛k||
(𝑧0)𝑢𝑛′k′

||
(𝑧0) + 𝑣𝑛k||

(𝑧0)𝑣𝑛′k′
||
(𝑧0)|2

(10)
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Figure 1: Schematic of the standard text-book definition of
the two-fluid model [27]. The inductive channel corresponds
to the super-fluid consisting of the paired states. The resistive
channel corresponds to the normal fluid, consisting of single-
particle excitations.

with 𝐿 and 𝐴 giving the cavity length and area from the
BdG simulation. The distinction from normal electrons
is the inclusion of a coherence factor, given here by the
factor |𝑢𝑢′+𝑣𝑣′|2, which accounts for the different coherence
properties in the superconducting phase.

Two-Fluid Model
The Bogoliubov-de Gennes states we solve for can be

used as inputs into the two-fluid model. The standard two-
fluid model is depicted in Fig. 1, where the two “fluids”
correspond to the paired states (super-fluid) and the single-
particle excitations (normal-fluid) and are modeled as two
resistive channels in parallel. The associated conductivities
are given by

𝜎1 = 𝑛𝑛𝑒2𝜏𝑛/𝑚
𝜎2 = 𝑛𝑠𝑒2/𝑚𝜔,

(11)

where 𝑛𝑛 and 𝑛𝑠 are the densities of the normal and super-
conducting electrons, and 𝜏𝑛 is the relaxation time of the
normal electrons [27].

To estimate the local fraction of normal electrons in the
superconducting phase, we compute the proportion of elec-
trons relative to the normal phase available for conduction

𝑛𝑛
𝑛 (𝑧) = 1

𝑁(0) ∑
𝑖

(− 𝜕𝑓𝑖
𝜕𝐸𝑖

) (𝑢2
𝑖 (𝑧) + 𝑣2

𝑖 (𝑧)) , (12)

where 𝑁(0) again denotes the electronic density of states
at the Fermi level. This quantity, and other normal-phase
properties, are readily computed within the Bogoliubov-de
Gennes framework by forcing Δ = 0 in Eqs. (1). For a ho-
mogeneous superconductor, Eq. (12) reduces to the standard
BCS form [27]. The superfluid density is calculated from
the assumption 𝑛𝑛 + 𝑛𝑠 = 𝑛.

Three-Fluid Model
We modify the two-fluid model for the case when the

bound states have a different relaxation time than the contin-
uum states. In this case, we treat the bound and continuum
states as two parallel resistive channels with conductivity

𝜎1 = (𝑛𝑏𝜏𝑏 + 𝑛𝑐𝜏𝑐) 𝑒2/𝑚, (13)

Figure 2: Schematic of the three-fluid model introduced in
this work. Like the standard two-fluid model, the inductive
channel still corresponds to the superfluid and the resistive
channel the normal fluid. However, the normal fluid in the
three-fluid model is partitioned into the density arising from
bound states with 𝐸𝑛 < Δ0 (𝜎𝑏 in blue) and from continuum
states with 𝐸𝑛 ≥ Δ0 (𝜎𝑐 in orange).
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Figure 3: Electronic mean free path (left y-axis) and elastic
relaxation time (right y-axis) as a function of the nitrogen
impurity concentration in parts per million given by DFT
calculations of niobium in its normal-conducting phase.

where 𝑛𝑏 and 𝑛𝑐 are the densities of bound and continuum
states, and 𝜏𝑏 and 𝜏𝑐 are their respective relaxation times.
These densities are calculated using Eq. (12) but restricting
the summation over states with 𝐸𝑛 < Δ0 or 𝐸𝑛 ≥ Δ0. We
refer to this modification the “three-fluid’’ model (see Fig. 2).

THREE-FLUID MODEL RESULTS
AND DISCUSSION

Figure 3 shows the results of the elastic relaxation time,
and associated mean free path, calculated for normal-
conducting niobium as a function of concentration of ni-
trogen impurities. We find an elastic scattering lifetime of
1.1 × 10−11 s, corresponding to a rate of 9 × 1010 s−1, for a
nitrogen concentration of one part per million. Considering
more realistic impurity concentrations, say 10 − 104 ppm,
we would expect a scattering rate 10−12 − 10−15 s. From
this result and the calculated Fermi-level density of states,
we determine the scattering potential strength of a nitrogen
impurity in bulk niobium to be 𝛼 ≈ 12.13 𝑎3

0 𝐸h. This param-
eter then enters into the calculation for the elastic scattering
rate of Bogoliubov quasiparticles.

Simulating nitrogen impurities with the perturbing poten-
tial given in Eq. (8), Fig. 4 plots the Bogoliubov quasiparticle
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Figure 4: Elastic scattering rate of Bogoliubov quasiparticle
at a nitrogen impurity concentration of 1 ppm as a func-
tion of depth where the point-like delta-function potential is
placed. Partioning the normal fluid into the two components
discussed in the subsection: Three-Fluid Model, the scatter-
ing rates for continuum (orange curve) and surface-bound
quasiparticle states (blue curve) are considered separately.

elastic scattering rate at a nitrogen impurity concentration of
1 ppm as a function of depth where the delta-function poten-
tial is placed. First we consider the effects of the normal-to-
superconducting phase transition on the scattering rates. For
point-like scatterers away for the surface deep into the bulk
of the material, the scattering rate for the bound quasiparti-
cles approaches zero and scattering rate for the continuum
states approaches 6 × 109 s−1 at a nitrogen concentration
of 1 ppm. This rate is about a factor of 15 slower than the
rate we found for the analogous case in normal-conducting
niobium, but a slower scattering rate is expected in the super-
conducting phase. When a material goes superconducting, a
gap opens up at the Fermi level, and quasiparticle scattering
rates are expected to scale as

𝜏−1
QP ∼ 𝜏−1 |𝜖𝑘|

√𝜖2
𝑘 + Δ2

, (14)

where 𝜖𝑘 is the normal electron’s energy measured relative
to the Fermi level [28]. Accordingly, Fermi-level electrons
become quasiparticles at the gap edge with infinite lifetimes,
but at finite temperatures we need to also consider electrons
with energies within 1

2𝑘𝑇 on either side of the Fermi-level.
With niobium’s superconducting gap of 1.5 meV, at 2 K the
quasiparticle scattering rates can be a factor 17 slower than
the normal electrons, agreeing well with the factor of 15 we
find here.

We study how the scattering rates for the the bound and
continuum Bogoliubov quasiparticle states vary as a func-
tion of depth where the delta-function potential is placed.
For point-like scatterers near the surface, Fig. 4 shows en-
hanced scattering rates for the bound quasiparticle states,
enhanced by about a factor of two as compared to the contin-
uum states. We also study extended defects by considering
a one-dimensional delta function 𝛿(𝑧 − 𝑧0) that can model
other defects including surface nanohydrides. For perturbing
potentials of this form near the surface, we find scattering
rates of the bound quasiparticle states about six times faster
than the continuum states.

As the field turns on, the superconducting gap at the sur-
face weakens caused by the penetrating fields at the surface.

Figure 5 plots the local superconducting gap (black curve)
at an accelerating field of 𝐸acc ≈ 30 MV/m for a simulated
cavity 12 penetration depths long. Table 1 reports the esti-
mated the surface gap reductions Δ(𝑧 = 0) at various values
of accelerating fields.

Table 1: Approximate Values of the Surface Gap Reduction
Reported for Various Field Values

𝐻0/𝐻𝑐 𝐻0 [mT] 𝐸acc [MV/m] Δ(𝑧 = 0)/Δ0

𝐻𝑐/4 50 12 0.97
𝐻𝑐/2 100 24 0.9
2𝐻𝑐/3 130 30 0.75-0.8

Also plotted in Fig. 5 is the local normal-fluid frac-
tion from Eq. (12) (red curve) at an accelerating field of
𝐸acc ≈ 30 MV/m. Noting that 𝑑𝑓 /𝑑𝐸 = −𝑓 (1−𝑓 )/(𝑘𝑇), we
can solve analytically what BCS theory predicts for 𝑛𝑛/𝑛 at
𝑇 = 2 K at zero field. We confirm that the results we pre-
dict for 𝑛𝑛/𝑛 for zero field and non-zero fields deep into the
material both agree with the BCS-predicted fraction within
a few percent.

Partitioning the local normal fluid fraction into the two
components discussed in the subsection: Three-Fluid Model,
Fig. 5 illustrates the portion of the normal fluid arising from
bound states with energies 𝐸𝑛 < Δ0 (𝑛𝑏/𝑛; blue curve) and
from continuum states with energies 𝐸𝑛 ≥ Δ0 (𝑛𝑐/𝑛; orange
curve). These two components sum to the total normal fluid
fraction, i.e. 𝑛𝑏 + 𝑛𝑐 = 𝑛𝑛. Subsequently, the three-fluid
model uses these density profiles along with elastic scatter-
ing rates of the two normal fluid components to determine
their underlying conductivities from Eq. (13), and eventually
the cavity’s surface resistance from Eq. (6). Nonetheless,
we first decide on optimal simulation parameters through
a convergence study of surface resistance in the two-fluid
model.

The three-fluid model collapses to the two-fluid model
when the elastic scattering rates of the bound and continuum
states are the same, when 𝜏𝑐 = 𝜏𝑏. Figure 6 shows the con-
vergence of the surface resistance from the two-fluid model
with respect to the grid spacing 𝑑𝑧 and total cavity length 𝐿0,
at an accelerating field of ∼30 MV/m and an elastic scatter-
ing time of 0.02 ps. The most sensitive simulation parameter
is the grid spacing 𝑑𝑧, which requires a Nyquist frequency
small enough to resolve states which rapidly oscillate with
periods near ∼1/𝑘F. For models assuming a spherical Fermi
surface, this condition requires

𝜋
𝑑𝑧 > 2𝑘𝐹 ⟹ 𝑑𝑧 < 0.0033 𝜆. (15)

In accordance with Eq. (15), Fig. 6 shows that the surface
resistance is adequately converged at 𝑑𝑧 = 0.003 𝜆 for wide
range of cavity lengths. Because we are mostly interested in
changes in the logarithm of the quality factor, convergence
within a factor of two is sufficient. The 𝑘-grid spacing is a
much less sensitive parameter, and increasing the resolution
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Figure 5: Local normal fluid fraction (red curve; left 𝑦-axis) and local superconducting gap (black curve; right 𝑦-axis) at
𝐻0 ≈ 130 mT, or 𝐸acc ≈ 30 MV/m. The normal fluid fraction is partitioned into the bound state density (blue curve) and
the continuum state density (orange curve), which sums to the total normal fluid fraction 𝑛𝑛/𝑛.
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Figure 6: Convergence of calculated surface resistances 𝑅𝑠
for various simulated cavity lengths 𝐿0 as a function of grid
spacing 𝑑𝑧 in units of penetration depths.

in 𝑘-space by a factor of two, from Δ𝑘 = 10𝜋 to Δ𝑘 = 5𝜋,
changes 𝑅𝑠 by < 0.5%. Our upcoming predictions for quality
factors as a function of field are computed from simulations
employing a 𝑘-grid spacing of Δ𝑘 = 10𝜋, a 𝑧-grid spacing
of 𝑑𝑧 = 0.003 𝜆, and a total cavity length 𝐿0 = 4 𝜆.

We compute the dissipation according to the three-fluid
model using the density profiles of the bound and contin-
uum normal-fluids to determine the underlying conductiv-
ities in Eq. (11). The elastic scattering times, 𝜏𝑐 and 𝜏𝑏,
will depend on the nature of the scattering, and fully accu-
rate descriptions of surface scattering include dependencies
on additional factors such as impurity concentration pro-
files, surface roughness [30] or coatings which include the
Nb3Sn coating that is often applied to the surface of SRF
cavities [10]. However, the ratio of the timescales for 𝜏𝑐 and
𝜏𝑏 is the factor determining how the quality factor changes
across field amplitudes.

Figure 7 plots the results for the quality factors we esti-
mate vs. field amplitude, along with several experimental
measurements from Grassellino et al. [29] for comparison.
Given the uncertainty in the ratio 𝜏𝑏/𝜏𝑐, Figure 7 shows the
range of plausible 𝑄 slopes resulting from the three-fluid
model for two limiting cases, 𝜏𝑏 = 0 (black dotted line) and
𝜏𝑏 = 𝜏𝑐 (black dashed line). The results for 𝜏𝑏 = 0 roughly
align with the anti-𝑄 slope in the experimental data for the
first 15 MV/m, whereas the 𝜏𝑏 = 𝜏𝑐 curve is similar to that
of the electro-polished cavity producing no anti-𝑄 slope. In

both these cases, we take 𝜏𝑐 to be ∼0.2 ps, which roughly
corresponds to nitrogen impurity concentrations at 750 ppm.

As the field strength increases, the density of the bound-
state fluid near the surface grows while the density of the
continuum state fluid shrinks. The increase in bound states
exceeds the decrease in continuum states, so if 𝜏𝑏 = 𝜏𝑐 the
net effect is to increase 𝜎1, drawing more current through the
resistive channel and dissipating more energy. However, if
𝜏𝑏 is negligible compared to 𝜏𝑐, the net effect is to decrease
𝜎1, which will result in more current flowing through the
inductive channel and ultimately reduce 𝑅s. Likewise, any
source of scattering that makes 𝜏𝑏 < 𝜏𝑐 can cause a decrease
in 𝜎1 and eventually produce an anti-𝑄 slope according
to our three-fluid model. We estimate an anti-𝑄 slope to
appear approximately when 𝜏𝑏 < 𝜏𝑐/5, given by the dashed-
dotted line in Fig. 7. The magnitude of the quality factor
could change significantly depending on the value of 𝜏𝑐,
but the difference in the slope of 𝑄 comes from the relative
scattering rates among the two components. These results
suggest that one could manipulate the 𝑄 slope by modulating
any scattering sources that affect the bound states more than
the continuum states.

It is worth noting that in the two- and three-fluid mod-
els, as in the conventional linear response theory, the dis-
sipation has an 𝜔2 dependence. If a mechanism with such
dependence produces an anti-𝑄 slope, the addition of a
mechanism with flat frequency dependence and no anti-𝑄
slope—such as the inelastic scattering mechanism discussed
in Ref. [31]—would explain why the anti-𝑄 slope becomes
more pronounced at higher frequencies. While this argu-
ment is speculative, it nonetheless demonstrates the potential
for bound states to contribute to the anti-𝑄 slope.

SUMMARY
For superconductors in large AC fields, there are quasi-

particle states for which a linear response approach to dissi-
pation is inadequate. We solve the Bogoliubov-de-Gennes
self-consistent field equations at the surface of a supercon-
ductor in a parallel magnetic field and find bound states with
energies less than the bulk superconducting gap to appear
at non-zero fields. These states bound to the surface have
energies below the value of the bulk superconducting gap,
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Figure 7: Quality factor vs. field amplitude for a niobium cavity at frequency 1.3 GHz. Markers show experimental data
from Grassellino et al. [29] for a selection of electro-polished (EP) or nitrogen-doped cavities. The black lines give the
results of the three-fluid model for two limiting cases and one intermediate case, all with 𝜏𝑐 = 0.2 ps. The dashed lines
show the quality factor assuming all states scatter at the same rate, the dotted lines show the quality factor assuming bound
states scatter much faster than continuum states, and the dashed-dotted lines show the intermediate case of bound states
scattering about a factor of 5 faster than continuum states.

and these energies change throughout an AC cycle. By focus-
ing on these fundamentally non-perturbative bound states,
we embark on a stark departure from conventional theories
that are derived in the weak-field limit to instead build a
theoretical framework from the adiabatic limit.

By calculating elastic scattering times of Bogoliubov
quasiparticles, our estimates suggest that certain kinds of
scattering can indeed affect the bound states more than the
continuum states. In the case where the relaxation times of
the bound states differs from that of the continuum states,
we argue that the two-fluid model should be modified into
a three-fluid model. The three-fluid model considers two
normal fluid in addition to the superconducting fluid, where
the continuum and bound quasiparticles are viewed as two
separate normal-conducting fluids. The resulting quality
factor could either increase or decrease with field strength,
depending on whether the relaxation time of the bound state
fluid is comparable to or much smaller than that of the con-
tinuum state fluid. According to the model we propose, 𝑄
slopes can be tuned by controlling the concentration profiles
of identified scattering sources in an SRF cavity. Then, tun-
ing the concentration of such scattering sources in an SRF
cavity can ultimately activate an anti-𝑄 slope.

Finally, we note that refining these calculations to include
ab initio electronic band-structures and the material’s actual
Fermi surface are the sensible next steps to build upon these
results.
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