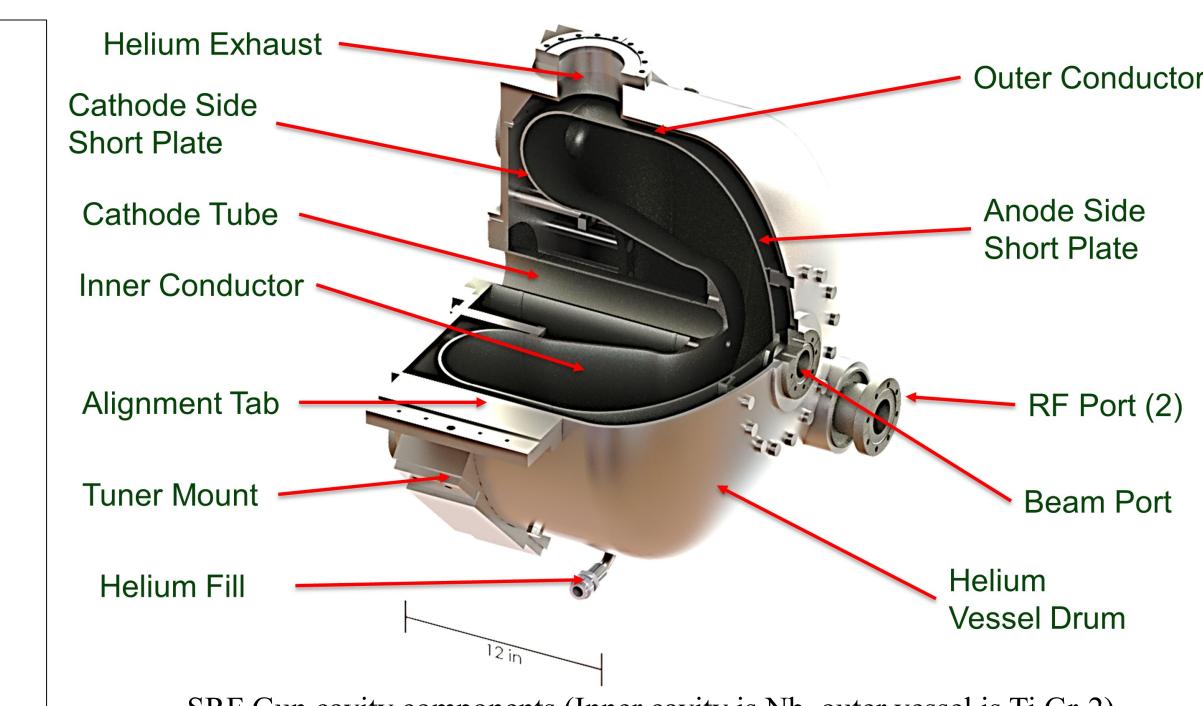
Abstract

A prototype SRF gun is currently being designed at FRIB, MSU for the Low Emittance Injector of the Linac Coherent Light Source high energy upgrade at SLAC. This employs a 185.7 MHz superconducting quarterwave resonator (QWR). The mechanical design of this cavity has been optimized for performance and to comply with ASME Section VIII, Div 2, Design by analysis requirements. This papers presents the various design by analysis procedures and how they have been adopted for the SRF gun cavity design.

	Protectio	on Agair	st Plastic Colla	pse: Limit l	oad anal	ysis
Requirements	Ter	np Loa Cas	8		ergence	
Protection Against Plastic Collapse:	RT	LC	1 1.5(P2+Grav	vity) Y	les	
 Elastic Stress Analysis Method Limit Load Analysis Method 	RT	LC	2 1.3(P2+Gravi	ty+T) Y	les	
 Elastic Plastic Stress Analysis Method 	4K	LC	3 1.5(P2+Grav	vity) Y	les	
Protection Against Local Failure:	4K	LC	4 1.3(P2+Gravi	ty+T) Y	les	
 Elastic Stress Analysis Elastic Plastic Analysis Protection Against Collapse From Buckling:]	Protection Agai	nst Local Fa	ilure	
Bifurcation Buckling using Elastic Stress Analysis	Τ	Load Case	Design Load Combination	σ 1+ σ 2+ σ 3 MPa	4S MPa	$\sigma_1 + \sigma_2 + \sigma_3$ <4S
 Bifurcation Buckling using Elastic Plastic Stress Analysis 	RT	LC1	P2+Gravity	<160	160	Yes
	RT	LC2	P2+Gravity+T	<160	160	Yes
Protection Against Failure From Cyclic Loading:	4K	LC3	P2+Gravity	341	845	Yes
1. Fatigue Analysis	717		12 · Oldvity			


Protection against Collapse from Buckling

Temp	Load Case	Design Load Combination	Load Multiplier
RT	LC1	P2+Gravity	11.2
RT	LC2	P2+Gravity+T	11.16
4K	LC3	P2+Gravity	7
4K	LC4	P2+Gravity+T	6.9

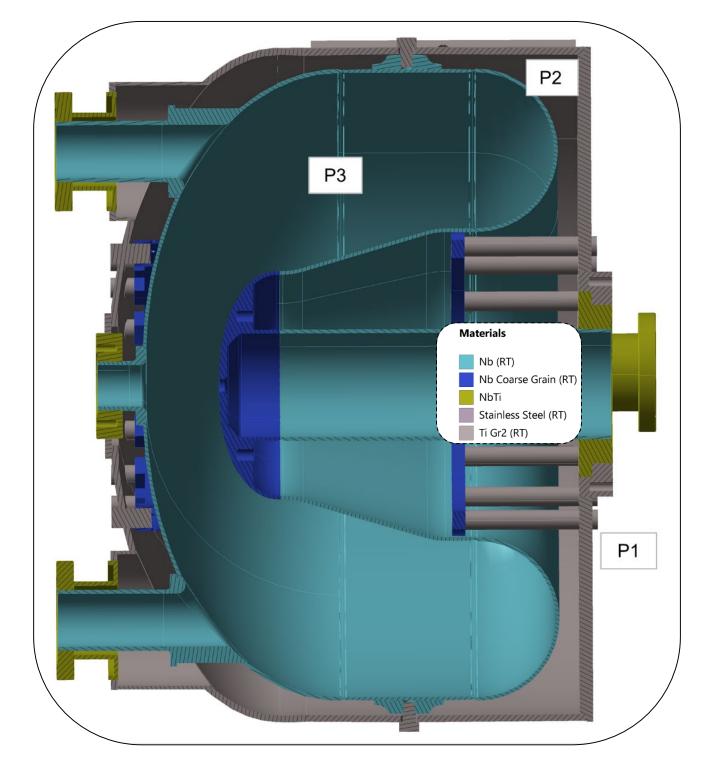
MECHANICAL DESIGN AND ANALYSIS OF SRF GUN CAVITY USING ASME BPVC SECTION VIII, DIVISION-2, **DESIGN BY ANALYSIS REQUIREMENT***

M. Patil[#], S. Miller, Ting Xu, S.H. Kim, C. Compton Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 USA

SRF Gun cavity components (Inner cavity is Nb, outer vessel is Ti Gr-2)

furcation buckling analysis, a m design factor of $\Phi B = 2/\beta cr$ is per the code. For unstiffened and fened cylinders and cones under pressure $\beta_{cr} = 0.80$, or $\Phi_B = 2.5$. he load multiplier are more than ired value of $\Phi_B = 2.5$

Summary

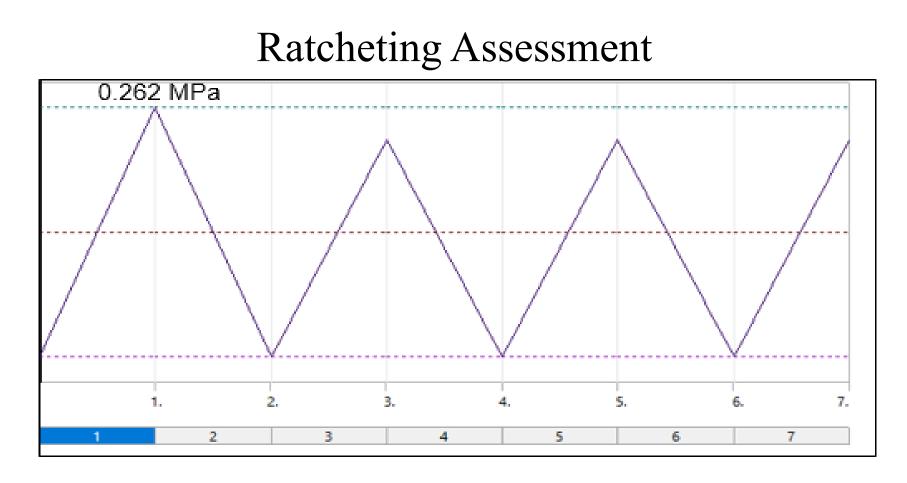

#patil@frib.msu.edu

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, operated by Michigan State University, under Award Number DE-SC0000661

Type of c $N_{\Delta FP}$ $N_{\Delta PO}$ $N_{\Delta TE}$ $N_{\Delta Ta}$ $N_{\Delta Tune}$ Total Cy

The results of the screening criteria (Method A), show that the cavity has less total cycles during its lifetime than the screening therefore requiring no fatigue criteria, analysis

	_		
RT	Gravity P2 = 0.227 MPa P1=P3=0 MPa	Warm Pressurization	
RT	Gravity P2 = 0.227 MPa P1=P3=0 MPa T = 0.14mm	Warm Pressurization + Tuner Extension	
4К	Gravity P2 = 0.41 MPa P1=P3=0 MPa	Cold Pressurization	
4К	Gravity P2 = 0.41 MPa P1=P3=0 MPa T = 0.14mm	Cold Pressurization +Tuner Extension	
	1 - 0.14		
RT	Gravity P1=P3=0.1 MPa P2= 0 MPa	Helium Space Leak Check	
RT	Gravity P2=P1=0.1 MPa P3= 0 MPa	Cavity Space Leak Check	
RT	Gravity P2=0.1 MPa P3= 0 MPa	Bare Cavity Leak Check	

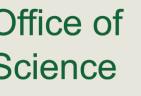

SRF Gun Cavity load cases (LC1 through LC4)

Protection against Collapse from Cyclic Loading

Fatigue Assessment

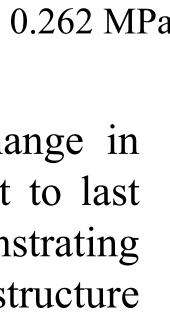
cycle	Number
)	33
)	0
3	66
1	33
er	300
vcles	432
vcles	432

 $N_{\Delta FP} + N_{\Delta PO} + N_{\Delta TE} + N_{\Delta Ta} + N_{\Delta Tuner} \le 1000$



MAWP = 0.227 MPa varied Tuner Displacement = 0.14mm varied First Load Step pressure = 1.15 * MAWP = 0.262 MPa Gravity load included in all load steps

Analysis shows that there is no change in dimension between the last and next to last cycles (load cases 5 and 7), demonstrating convergence. This indicates that the structure has an elastic core and no permanent change in overall dimensions


Structural analysis of SRF Gun cavity and supporting helium vessel design shows that it meets the ASME BPVC, Section VIII, Div. 2, Part 5 • Nb yield strength data before and after bake out, confirmed by testing FEA model includes wall thinning effects due to forming and etching Weld joints developed as per ASME BPVC Sec VIII, Div. 1

