

DEGRADATION AND RECOVERY OF CAVITY PERFORMANCE IN SRILAC CRYOMODULES AT RIKEN RI-BEAM FACTORY

N. Sakamoto, O. Kamigaito, K. Ozeki, K. Suda, K. Yamada

RIKEN NISHINA CENTER, Wako, Saitama, Japan

WEPWB085

2.4

-25

579

22.4

 1×10^{9}

7.5

 $1 - 4.5 \times 10^{6}$

6.8

0.078

Related papers for SRF' 23: K. Yamada et al., "Operational Experience for RIKEN Superconducting Linear Accelerator", MOIXA04

T. Nishi et al., "Development of Non-Destructive Beam Envelope Measurements in SRILAC with Low Beta Heavy Ion Beams Using BPMs", MOPMB086 K. Ozeki et al., "Present Status of Riken Power Couplers for SRILAC", WEPWB101

Abstract

The RIKEN superconducting (SC) heavy-ion linear accelerator (SRILAC) has been providing beam supply for super-heavy elements synthesis experiments [1] since its commissioning in January 2020 [2]. However, the long-term operation of SC radio-frequency (RF) cavities leads an increase in the X-ray levels caused by field emissions resulting from changes in the inner surface conditions. More than half of the ten SC 1/4 wavelength resonators (SC-QWRs) of SRILAC, operating at a frequency of 73 MHz, have experienced an increase in X-ray levels, thus, requiring adjustments to the acceleration voltage for continuous operation. While several conditioning methods have been employed for SC cavities, a fully established technique is yet to be determined. To address this, a relatively simple conditioning method was implemented at RIKEN. The proposed method uses high-voltage pulsed power and imposes a low load on the cavities. [1] H. Sakai et al., Eur. Phys. J. A, vol. 58. pp.238, 2022 [2] K. Yamada et al., SRF' 21, MOOFAV01, pp.167–174.

Introduction and overview of SRILAC Table 1: SRILAC design parameters • The RIKEN heavy-ion linac was upgraded to advance the SHE synthesis program beyond nihonium. Parameters • Superconducting linac based on ten SC-QWRs enables to provide ions with A/q=6 with an energy of 6.5 MeV/u. Frequency (MHz) 73.0 (CW)

SC09

SC10

0 10-2 178 0 0 0

RIKEN SC-QWR

• 73 MHz, **4.5 K**

 $\circ^{10^{\circ}}$

DEGRADATION OF SC-QWRs

• The SC-QWRs experienced continuous degradation after the issue with the coupler window of SC06.

• A gradual increase of the X-ray levels was observed during high-power tests performed routinely after cool-down from room temperature; not so serious. • We repeatedly encountered sudden increases in the X-ray levels, which were continuously measured for each CM during beam service.

Table 2: Events related to SC-QWRs

FIRST ATTEMPT ON PERFORMANCE RECOVERY (SC07)

2.0 2.5 (5-6/0ct/2022)

• Conditioning method using high-voltage pulsed RF power, which is relatively simple and imposes a low load on the SC cavities.

• At KEK this method has been adopted to the cERL injector cryomodule, and the cavity performance was successfully recovered [8].

• Pulsed RF power with 1.34 MVp successfully reduced the SC07 X-rays for CW operation.

Block diagram of conditioining

[8] E. Kako et al., SRF' 17, MOPV097, pp. 289–293.

WHY THE HIGH-POWER PULSED RF CONDITIONING IS EFFECTIVE TO RIKEN SC-QWRs

- Multipacting (MP), which causes a sudden drop of the gap voltage, is another issue
- Some of the SC-QWRs could not hold required acceleration voltage owing to MP.

SC09 Table 3: History of the pulsed RF power conditioning. Here

SUMMARY AND FUTURE PLAN

 The SRILAC has been in operation for the past four years. However, the degree of performance degradation has become a significant issue, jeopardizing the continuity of operations. • Therefore, high-power pulsed RF conditioning was tested to restore the performance. • During the period considered in this study, the proposed method successfully limited the X-ray levels. • Currently, minimal conditioning is being performed to sustain beam operation. • In the near future, we plan to conduct helium processing test using a prototype cavity.

• In the X-ray measurement before conditioning, MP occurred at the gap voltage of 1.5 MV and a deterioration of the vacuum pressure of the adjacent MEBT was observed.

• Occasionally, a sudden loss of the pickup signal was observed (see below), accomplished by variation in the vacuum pressure.

• After completing the conditioning, MP occurred scarcely.

 V_p^{max} is a maximum pulsed voltage of the SC-QWRs.

Date	Cavity	Time	V_p^{\max} [MV]
11/22/2022	SC07	7:37	1.34
11/24/2022	SC06	4:05	1.52
11/28/2022	SC09	1:14	1.57
11/29/2022	SC02	0:37	1.98
1/12/2023	SC07	0:54	1.55
1/13/2023	SC09	1:44	1.99
3/29/2023	SC08	2:35	1.80
4/13/2023	SC01	0:40	2.23
6/7/2023	SC09	1:13	2.54

