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Overview 

Plasma Processing setup for β = 0.085 QWR 

• Cavity and FPC electric fields simulated using CST MWS
• Breakdown electric field characterized in different ways:

o Global 𝐸!: Peak surface electric field 
o Global 𝐸"#$: Highest average electric field

Ø Found between beam port and inner conductor
o Local 𝐸!: Peak surface electric field along 𝐸"#$

• FRIB is an accelerator facility supporting a heavy ion 
superconducting LINAC for nuclear physics research. ‘

• Both QWR and HWR are used to accelerate ions to ≥ 200 
MeV per nucleon. 

• Plasma processing is being developed to maintain long term 
performance of QWR and HWR. 

• Plasma processing via chemical and physical processes 
can remove contaminants that cause field emission and 
multipacting. 

• Plasma processing may be performed in-situ with the 
cryomodule which could prove advantageous over other 
surface treatments. 

Fundamental and HOMs for Processing
• FPC and cavity are poorly coupled at room temperature 

for fundamental mode; 𝑄% = 3 ∗ 10&, 𝑄'() = 10*.	
• HOMs have less coupler mismatch and improve the ratio 

between cavity field and coupler field leading to improved 
power delivery to the cavity

• Modes used in FRIB β = 0.085 QWR for plasma ignition

Experimental Apparatus 

Ignition of Fundamental Power Coupler
• FPC ignition must be avoided during plasma processing.  

o Copper may be sputtered into cavity.  
o FPC could be damaged due to intense plasma. 

 

• Breakdown threshold must be understood for cavity and 
FPC to avoid FPC ignition. 
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Theoretical Model
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• A simplified model for breakdown was developed balancing 
ionization and diffusion of electrons [1]. 

• High frequency limit of model found to predict ignition 
threshold well for CEBAF cavity [2].

• The breakdown threshold is only determined by geometry of 
the volume, the gas characteristics, and driving frequency.  

• Breakdown is described by: 

• Λ parameter is the “effective diffusion length” determined by 
the geometry. 

• 𝑙, 𝑢, , and 𝑣- are mean free path, ionization potential, and 
electron neutral collision frequency that are determine by the 
choice of gas species and pressure. 
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• 2 models constructed for cavity geometry based on nominal 
dimensions and accelerating gap dimensions. 

• Experimental measurements of stored energy and forward 
power at ignition are used to infer RF breakdown fields at 
ignition from CST MWS. 

• Best characterization of breakdown comes from use of 
“Local 𝐸!” for cavity volume. 

• Diffusion model assumes Λ > 𝑙 which is true for cavity, but 
untrue for FPC.

• Different description of breakdown needed for FPC volume. 
• A more rigorous treatment of the Λ parameter is required to 

better understand the theoretical breakdown limit. 
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