Study of Different Piezoelectric Material Stroke Displacement With Respect to Temperature Using An SRF Cavity

+ ccontrer@fnal.gov

Introduction

- Piezoelectric (piezo) actuators have a wide array of applications such as in resonance control in SRF linacs and various experiments in dilution refrigerators (heat capacity μWs)
- In these applications a large stroke and small heat dissipation is crucial, two piezo materials will be compared with these characteristics
- PZT is the most widely used material for actuators, it provides a larger stroke but it heats up rapidly

Table 1: Comparison of PZT and LiNbO₃ figures of merit. The stroke for LiNbO₃ is from -500 V to 500 V. For PZT it is 0 to 100 V.

	PIC 050	PIC 255/252
Material	LiNbO ₃	PZT
Length [mm]	36	18
Cross-section $[mm^2]$	100	100
Stroke (300 K) [µm]	3	15
Stiffness [N/µm]	195	200
Blocking Force [N]	585	3600
Curie Temperature [K]	1423	623
Density ρ [g/cm ⁻³]	5	7.80
Relative Permittivity	28.7	1750
ϵ_{33}/ϵ_0		

- LiNbO₃ produces 0.3 % of heat dissipation of PZT but has a stroke of 8.3 % of PZT at room Table 1 for temperature, see properties of both
- From literature it is known that LiNbO₃ doesn't decrease the displacement stroke as drastically compared to PZT
- An SRF cavity was used to measure the piezo stroke due to its extreme sensitivity to longitudinal deformation

Cavity Frequency Tuner

Figure 1: Left: schematic of one cell 1.3 GHz cavity with tuner installed. Right: **Picture of cavity.**

Figure 2 : Close-up look at the location of the piezos on the cavity tuner. Left is the LiNbO₃ and right is the PZT.

Figure 3 : Left: Depiction of cavity resonance when the cavity is compressed, this frequency shift is related compression. Right: Schematic of cavity compression by the piezos.

C. Contreras-Martinez[†], Y. Pischalnikov, JC. Yun Fermilab, Batavia, IL, USA

- The LCLS-II tuner is used, it consist of a stepper motor and piezos • The cavity-tuner system is supported by an aluminum frame
- There are two piezos capsules which are used to control the frequency, in this case a PZT and LiNbO₃ capsules were used (See Figs. 1 and 2)
- The PZT capsule has a Cernox RTD attached to the PZT body, this is used to monitor the temperature
- The piezos are preloaded with the tuner to prevent any slack once cooled down
- The whole setup is inserted in a Dewar which is filled with liquid helium
- The frequency sensitivity of the cavity to longitudinal deformation is 2.3 kHz/µm and the cavity stiffness is 23 kN/mm
- The efficiency of the tuner is 40 % when both piezos are used, 20 % when only one piezo is used
- The method of the piezo stroke measurement is illustrated in Fig. 3 where the frequency shift of the cavity is related to the piezo stroke

Measurement at 4 K

- After cooling down to 4 K the stainless-steel frame becomes stiffer by 5% compared to room temperature, this improve the tuner efficiency by the same amount
- This effect is taking into consideration for the stroke calculations

Figure 4: Piezo hysteresis plot on the cavity at 4 K. Left plot is for PZT and right plot is for LiNbO₃.

- Fig. 4 shows the hysteresis from both piezos, the hysteresis of the LiNbO₃ is smaller than that of PZT
- The hysteresis is correlated with the loss tangent thus showing that the loss tangent of LiNbO₃ is still smaller than the PZT

up, voltage used was 0 to 100 V.

- drastically due to thermal effects
- frequency shifts caused by the temperature drifts
- The stroke of the piezo is calculated with the equation
- is given by

$$\frac{\delta D}{D} = \sqrt{\left(\frac{\delta S}{S}\right)^2 + \left(\frac{\delta E}{E}\right)^2 + \left(\frac{\delta \Delta f}{\Delta f}\right)^2}$$
oke is shown in Table 2

• The calculated stroke is shown in Table 2

Table 2: The piezo sensitivity for 293 K is from 0 to 100 V. At 4 K it is from 0 V to 100 V. For LiNbO₃ it is from -500 V to 500 V at room temperature and at 4 K.

Piezo Type	Capacitance [<i>µF</i>] P		Piezo Se [Hz/V]	Piezo Sensitivity [Hz/V]		ulated ke [µm]	Stroke Ratio 4 K/300 K [%]
	293 K	4 K	293 K	4 K	293 K	4 K	
PZT	14	4	-112	-26.4	24.3±1.7	5.4 ± 0.4	22.4 ± 2.2
LiNb0 ₂	.0013	.00125	-1.393	-1.323	3.0 ± 0.3	2.7 ± 0.2	90.4+11.2

Conclusion

- previously reported in the literature

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics

WEPWB134 FERMILAB-POSTER-23-073-TD

• Fig. 5 shows the data for PZT during warmup, the measurements stopped after 91 K because the frequency of the cavity was changing

• The measurements could not be done for LiNbO₃ due to larger

• Where Δf is the frequency shift, E is the efficiency of the tuner at 20 % for a single piezo, and S Is the cavity sensitivity at 2.3 kHz/um Each of these parameters carries an uncertainty, the error for the stroke

• The results show that PZT stroke is reduced to 22.4 % of the value at room temperature which is larger than the 10 %

The stroke of LiNbO₃ was measured for the first time with an SRF cavity and it is 90.4 % of the room temperature value

Office of ENERGY Office of Science

