

# Crab Cavities (CC) for ILC

Peter McIntosh UKRI-STFC Daresbury Laboratory On behalf of the WP3 CC Design teams

*SRF23, Grand Rapids, USA* 25<sup>th</sup> – 30<sup>th</sup> June, 2023









# Crab Cavities (CC) for ILC

Peter McIntosh UKRI-STFC Daresbury Laboratory On behalf of the WP3 CC Design teams

SRF23, Grand Rapids, USA 25<sup>th</sup> – 30<sup>th</sup> June, 2023







### Outline



- ILC Pre-Lab Time Critical Workpackages
- CC Specifications Development
- CC Design Variants
- Down-selection Review
- Summary





#### ML&SRF DR (Damping ring) BDS Sources Dump (Main linac & (Beam Delivery System) Superconducting RF) WP-prime 15 WP-prime 17 WP-prime 1 WP-prime 4 WP-prime 12 Final focus Main dump Cavity production Electron source System design WP-prime 2 Undulator positron scheme WP-prime 16 Cryomodule design Final doublet WP-prime 14 WP-prime 3 Injection/extraction Crab cavity WP-prime 6 Rotating target WP-prime 7 Magnetic focusing E-driven positron scheme WP-prime 8 Rotating target WP-prime 9 Magnetic focusing WP-prime 10 Capture cavity \_ \_ \_ \_ \_ WP-prime 11 Target replacement

#### WG2 Accelerator: Workpackages

**ILC Pre-Lab Time Critical Workpackages** 

Ref: 'Time-critical WPs for the ILC construction', IDT-WG2, v8.0 Jun 2022

#### Figure 3: Time-critical WPs



Peter McIntosh – Crab Cavities for ILC, SRF23, Grand Rapids, USA

## Strong support from KEK: Kirk Yamamoto – WP1/2 Coordinator

• Akira Yamamoto – IDT WG2

CC design teams from Europe & USA.

- Toshiyuki Oguki ILC BDS
- Shin Michizono IDT WG2 Chair



#### ML&SRF DR (Damping ring) BDS (Main linac & Sources Dump (Beam Delivery System) Superconducting RF) WP-prime 15 WP-prime 17 WP-prime 4 WP-prime 12 WP-prime 1 Final focus Main dump Cavity production Electron source System design WP-prime 2 Undulator positron scheme WP-prime 16 Crvomodule design Final doublet WP-prime 3 WP-prime 14 Injection/extraction Crab cavity WP-prime 6 Rotating target WP-prime 7 Magnetic focusin -driven positron schen WP-prime 8 Rotating target WP-prime 9 Magnetic focusing WP-prime 10 Capture cavity WP-prime 11 Target replacement

#### WG2 Accelerator: Workpackages

**ILC Pre-Lab Time Critical Workpackages** 

Ref: 'Time-critical WPs for the ILC construction', IDT-WG2, v8.0 Jun 2022





### CC design teams from Europe & USA.

- Strong support from KEK:
  - *Kirk Yamamoto WP1/2 Coordinator*
  - Akira Yamamoto IDT WG2
  - Toshiyuki Oquki ILC BDS
  - Shin Michizono IDT WG2 Chair

### WP3 Crab Cavities

- WP3 kicked off: Mar21 5 CC variants (resource limited).
- **Down-select 1**: Apr23 Select 2 CC variants to prototype:
  - MEXT funding to supply material for prototyping.
- **Down-select 2**: Oct24 Select 1 CC variant for prototype cryomodule development.
- Fully dressed horizontal test and prototype CM (pCM) design finalized - 2026



#### ML&SRF DR (Damping ring) BDS (Main linac & Sources Dump (Beam Delivery System) Superconducting RF) WP-prime 15 WP-prime 17 WP-prime 4 WP-prime 12 WP-prime 1 Final focus Main dump Cavity production Electron source System design WP-prime 2 Undulator positron scheme WP-prime 16 Crvomodule design Final doublet WP-prime 3 WP-prime 14 Injection/extraction Crab cavity WP-prime 6 Rotating target WP-prime 7 Magnetic focusin -driven positron schen WP-prime 8 Rotating targe WP-prime 9 Magnetic focusing WP-prime 10 Capture cavity WP-prime 11 Target replacement

WG2 Accelerator: Workpackages

**ILC Pre-Lab Time Critical Workpackages** 

Ref: 'Time-critical WPs for the ILC construction', IDT-WG2, v8.0 Jun 2022

#### Figure 3: Time-critical WPs

All IDT WP3 CC progress captured: https://agenda.linearcollider.org/c ategory/256/



Technology **Facilities Council** 

### CC design teams from Europe & USA.

- Strong support from KEK:
  - *Kirk Yamamoto WP1/2 Coordinator*
  - Akira Yamamoto IDT WG2
  - Toshiyuki Oquki ILC BDS
  - Shin Michizono IDT WG2 Chair

### WP3 Crab Cavities

- WP3 kicked off: Mar21 5 CC variants (resource limited).
- **Down-select 1**: Apr23 Select 2 CC variants to prototype:
  - MEXT funding to supply material for prototyping.
- **Down-select 2**: Oct24 Select 1 CC variant for prototype cryomodule development.
- Fully dressed horizontal test and prototype CM (pCM) design finalized - 2026



### **Crossing Angle - Crabbing is Essential!!!**



#### ILC RDR parameter, by CAIN simulation



Ref: Shin Michizono (KEK), The ILC250 Accelerator, Sept 2020.

- Large IR crossing angle preferred to separate the injection/extraction beams:
  - ILC requires 14 mrad crossing angle.
- Luminosity is reduced as crossing angle increases.

Crab Cavities are fundamental to regain luminosity for ILC.





## **CC** Operational Requirements

- The ILC Crab Cavity system must:
  - Provide the required **deflecting voltage** to optimally rotate the intersecting beam bunches at the Interaction Point.
  - Ensure its robust operation, within acceptable limits for stability.
- But also:
  - Suppress all **unwanted HOM power** (longitudinal and transverse) to an acceptable level.
  - Provide an ability to **de-tune frequency**, such that it can be safely 'parked' when not required.
  - **Physically fit** within the constraints of the ILC BDS Interaction Region location.









### **ILC Interaction Region Constraints**



### Two beamline separation 14.049m x 0.014rad = 197mm





- **3.85 m longitudinal space** in the IR, for CC cryomodule (incl. gate-valves).
- **197 mm beam-line separation** at centre of 3.85 m location, which varies across its length (for **14 mrad** crossing angle).







| Parameter                                             | ILC250 10Hz<br>Upgrade                                |           |                          | ILC1000 |       |            |
|-------------------------------------------------------|-------------------------------------------------------|-----------|--------------------------|---------|-------|------------|
| Beam Energy (GeV) e+/e-                               | :                                                     | 125/12    | 5                        |         | 500/  | 500        |
| Crossing Angle (mrad)                                 |                                                       |           | 14                       |         |       |            |
| Installation site (m from IP)                         |                                                       |           | 14                       |         |       |            |
| RF Repetition Rate (Hz)                               | 5                                                     |           | 10                       |         | 4     |            |
| Number of bunches                                     | 1312                                                  | !         | 2625                     |         | 24.   | 50         |
| Bunch Train Length (ms)                               | 727                                                   |           | 961                      |         | 89    | 7          |
| Bunch Spacing (ns)                                    | 554                                                   |           |                          | 366     | 5     |            |
| Beam current (mA)                                     | 5.8                                                   |           | 8.75                     |         | 7.    | 6          |
| Operating Temp (K)                                    |                                                       |           | 2                        |         |       |            |
| Cryomodule installation length (m)                    |                                                       | 3.85 (inc | orporating ga            | ite val | ves)  |            |
| Horizontal beam-pipe separation (m)                   | 0.1967 (centre) ±0.0266 (each end of installation len |           |                          |         |       | on length) |
|                                                       |                                                       |           |                          |         |       |            |
| Cavity Frequency (GHz)                                | 3.9                                                   | 2.6       | 1.3                      | 3.9     | 2.6   | 1.3        |
| Total Kick Voltage (MV)                               | 0.615                                                 | 0.923     | 1.845                    | 2.5     | 3.7   | 7.4        |
| Max Ep (MV/m)                                         | 45                                                    |           |                          |         |       |            |
| Max Bp (mT)                                           |                                                       |           | 80                       |         |       |            |
| Amplitude regulation/cavity (% rms)                   |                                                       | 3.5 (fo   | r 2% luminosi            | ty dro  | o)    |            |
| Relative RF Phase Jitter (deg rms)                    |                                                       |           | 0.069                    |         |       |            |
| Timing Jitter (fs rms)                                |                                                       | 49 (fo    | r 2% Iuminosi            | ty drop | )     |            |
| Max Detuning (kHz)                                    | 240                                                   | 170       | 100 - 180                | 240     | 170   | 100 - 180  |
| Longitudinal impedance threshold (Ohm)                |                                                       | Cavity    | wakefield dep            | pender  | nt    |            |
| Trasverse impedance threshold (MOhm/m) (X,Y)          |                                                       |           | 48.8, 61.7               |         |       |            |
| Cavity field rotation tolerance/cavity (mrad rms)     |                                                       | 5.2 (fo   | r 2% luminosi            | ty dro  | o)    |            |
| Beam tilt tolerance (H and V) (mrad rms and urad rms) | (                                                     | ).35, 7.4 | (for 2% lumin            | osity a | lrop) |            |
| Minimum CC beam-pipe aperture size (mm)               | >25 (same as FD magnets)                              |           |                          |         |       |            |
| Minimum Exraction beam-pipe aperture size (mm)        | 20                                                    |           |                          |         |       |            |
| Beam size at CC location (X, Y,Z) (mm,um,um)          | 0.97, 66, 300                                         |           |                          |         |       |            |
| Beta function at CC location (X, Y) (m,m)             | 23200, 15400                                          |           |                          |         |       |            |
| Horizonal kick factor (kx) (V/pC/m)                   |                                                       |           | << 1.6 x 10 <sup>3</sup> |         |       |            |
| Vertical kick factor (ky) (V/pC/m)                    |                                                       |           | << 1.2 x 10 <sup>2</sup> |         |       |            |
| CC System operation                                   | 6                                                     | assume    | CW-mode of               | perat   | tion  |            |



2 beam energy options → (plus ILC500 - 250/250)

| Parameter                                             | ILC25         | 10Hz<br>Upgrade  | rade ILC100              |          | 000     |            |
|-------------------------------------------------------|---------------|------------------|--------------------------|----------|---------|------------|
| Beam Energy (GeV) e+/e-                               | 1             | 125/125          | 5                        |          | 500/    | 500        |
| Crossing Angle (mrad)                                 |               |                  | 14                       |          |         |            |
| Installation site (m from IP)                         |               |                  | 14                       |          |         |            |
| RF Repetition Rate (Hz)                               | 5             |                  | 10                       |          | 4       | !          |
| Number of bunches                                     | 1312          |                  | 2625                     |          | 24      | 50         |
| Bunch Train Length (ms)                               | 727           |                  | 961                      |          | 89      | 7          |
| Bunch Spacing (ns)                                    | 554           |                  |                          | 366      | 6       |            |
| Beam current (mA)                                     | 5.8           |                  | 8.75                     |          | 7.      | 6          |
| Operating Temp (K)                                    |               |                  | 2                        |          |         |            |
| Cryomodule installation length (m)                    |               | 3.85 (inc        | orporating go            | ate val  | ves)    |            |
| Horizontal beam-pipe separation (m)                   | 0.1967 (cent  | tre) ±0.02       | 266 (each end            | l of ins | tallati | on length) |
|                                                       |               |                  |                          |          |         |            |
| Cavity Frequency (GHz)                                | 3.9           | 2.6              | 1.3                      | 3.9      | 2.6     | 1.3        |
| Total Kick Voltage (MV)                               | 0.615         | 0.923            | 1.845                    | 2.5      | 3.7     | 7.4        |
| Max Ep (MV/m)                                         | 45            |                  |                          |          |         |            |
| Max Bp (mT)                                           |               |                  | 80                       |          |         |            |
| Amplitude regulation/cavity (% rms)                   |               | 3.5 (fo          | r 2% Iuminosi            | ity dro  | D)      |            |
| Relative RF Phase Jitter (deg rms)                    |               |                  | 0.069                    |          |         |            |
| Timing Jitter (fs rms)                                |               | 49 (foi          | <sup>-</sup> 2% luminosi | ty drop  | )       |            |
| Max Detuning (kHz)                                    | 240           | 170              | 100 - 180                | 240      | 170     | 100 - 180  |
| Longitudinal impedance threshold (Ohm)                |               | Cavity           | wakefield de             | pender   | nt      |            |
| Trasverse impedance threshold (MOhm/m) (X,Y)          |               |                  | 48.8, 61.7               |          |         |            |
| Cavity field rotation tolerance/cavity (mrad rms)     |               | 5.2 (fo          | r 2% luminosi            | ity dro  | p)      |            |
| Beam tilt tolerance (H and V) (mrad rms and urad rms) | 0             | ).35, 7.4        | (for 2% lumin            | osity a  | lrop)   |            |
| Minimum CC beam-pipe aperture size (mm)               |               | > <b>25 (</b> sa | me as FD m               | nagne    | ts)     |            |
| Minimum Exraction beam-pipe aperture size (mm)        | 20            |                  |                          |          |         |            |
| Beam size at CC location (X, Y,Z) (mm,um,um)          | 0.97, 66, 300 |                  |                          |          |         |            |
| Beta function at CC location (X, Y) (m,m)             | 23200, 15400  |                  |                          |          |         |            |
| Horizonal kick factor (kx) (V/pC/m)                   |               |                  | << 1.6 x 10 <sup>3</sup> |          |         |            |
| Vertical kick factor (ky) (V/pC/m)                    |               |                  | << 1.2 x 10 <sup>2</sup> |          |         |            |
| CC System operation                                   | a             | assume           | CW-mode of               | operat   | tion    |            |



2 beam energy options → (plus ILC500 - 250/250)

| Parameter                                             | ILC250 Upgra    |                  |                          | grade ILC10 |         | 000        |
|-------------------------------------------------------|-----------------|------------------|--------------------------|-------------|---------|------------|
| Beam Energy (GeV) e+/e-                               | 125/125 500/500 |                  |                          |             | 500     |            |
| Crossing Angle (mrad)                                 | 14              |                  |                          |             |         |            |
| Installation site (m from IP)                         |                 |                  | 14                       |             |         |            |
| RF Repetition Rate (Hz)                               | 5               |                  | 10                       |             | 4       | !          |
| Number of bunches                                     | 1312            |                  | 2625                     |             | 24.     | 50         |
| Bunch Train Length (ms)                               | 727             |                  | 961                      |             | 89      | 7          |
| Bunch Spacing (ns)                                    | 554             |                  |                          | 360         | 6       |            |
| Beam current (mA)                                     | 5.8             |                  | 8.75                     |             | 7.      | 6          |
| Operating Temp (K)                                    |                 |                  | 2                        |             |         |            |
| Cryomodule installation length (m)                    |                 | 3.85 (inc        | orporating ga            | ite val     | ves)    |            |
| Horizontal beam-pipe separation (m)                   | 0.1967 (cent    | re) ±0.02        | 266 (each ena            | l of ins    | tallati | on length) |
|                                                       |                 |                  |                          |             |         |            |
| Cavity Frequency (GHz)                                | 3.9             | 2.6              | 1.3                      | 3.9         | 2.6     | 1.3        |
| Total Kick Voltage (MV)                               | 0.615           | 0.923            | 1.845                    | 2.5         | 3.7     | 7.4        |
| Max Ep (MV/m)                                         |                 |                  | 45                       |             |         |            |
| Max Bp (mT)                                           |                 |                  | 80                       |             |         |            |
| Amplitude regulation/cavity (% rms)                   |                 | 3.5 (fo          | r 2% Iuminosi            | ty dro      | D)      |            |
| Relative RF Phase Jitter (deg rms)                    |                 |                  | 0.069                    |             |         |            |
| Timing Jitter (fs rms)                                |                 | 49 (fo           | r 2% luminosi            | ty drop     | )       |            |
| Max Detuning (kHz)                                    | 240             | 170              | 100 - 180                | 240         | 170     | 100 - 180  |
| Longitudinal impedance threshold (Ohm)                |                 | Cavity           | wakefield de             | pender      | nt      |            |
| Trasverse impedance threshold (MOhm/m) (X,Y)          |                 |                  | 48.8, 61.7               |             |         |            |
| Cavity field rotation tolerance/cavity (mrad rms)     |                 | 5.2 (fo          | r 2% Iuminosi            | ty dro      | D)      |            |
| Beam tilt tolerance (H and V) (mrad rms and urad rms) | 0               | ).35, 7.4        | (for 2% lumin            | osity a     | lrop)   |            |
| Minimum CC beam-pipe aperture size (mm)               |                 | > <b>25 (</b> sa | ame as FD m              | nagne       | ts)     |            |
| Minimum Exraction beam-pipe aperture size (mm)        | 20              |                  |                          |             |         |            |
| Beam size at CC location (X, Y,Z) (mm,um,um)          | 0.97, 66, 300   |                  |                          |             |         |            |
| Beta function at CC location (X, Y) (m,m)             | 23200, 15400    |                  |                          |             |         |            |
| Horizonal kick factor (kx) (V/pC/m)                   |                 |                  | << 1.6 x 10 <sup>3</sup> |             |         |            |
| Vertical kick factor (ky) (V/pC/m)                    |                 |                  | << 1.2 x 10 <sup>2</sup> |             |         |            |
| CC System operation                                   | a               | issume           | CW-mode of               | pera        | tion    |            |

Frequency (x3) Kick Voltage (x3)



2 beam energy options → (plus ILC500 - 250/250)

| Parameter                                             | ILC25                    | Upgrade   | ILC1000                  |          | 000     |            |
|-------------------------------------------------------|--------------------------|-----------|--------------------------|----------|---------|------------|
| Beam Energy (GeV) e+/e-                               | 125/125 500/500          |           |                          | 500      |         |            |
| Crossing Angle (mrad)                                 |                          |           | 14                       |          |         |            |
| Installation site (m from IP)                         | 14                       |           |                          |          |         |            |
| RF Repetition Rate (Hz)                               | 5                        |           | 10                       |          | 4       |            |
| Number of bunches                                     | 1312                     |           | 2625                     |          | 24      | 50         |
| Bunch Train Length (ms)                               | 727                      |           | 961                      |          | 89      | 7          |
| Bunch Spacing (ns)                                    | 554                      |           |                          | 366      | 5       |            |
| Beam current (mA)                                     | 5.8                      |           | 8.75                     |          | 7.      | 6          |
| Operating Temp (K)                                    |                          |           | 2                        |          |         |            |
| Cryomodule installation length (m)                    |                          | 3.85 (inc | orporating ga            | ite vali | ies)    |            |
| Horizontal beam-pipe separation (m)                   | 0.1967 (cent             | re) ±0.02 | 66 (each end             | of ins   | tallati | on length) |
|                                                       |                          |           |                          |          |         |            |
| Cavity Frequency (GHz)                                | 3.9                      | 2.6       | 1.3                      | 3.9      | 2.6     | 1.3        |
| Total Kick Voltage (MV)                               | 0.615                    | 0.923     | 1.845                    | 2.5      | 3.7     | 7.4        |
| Max Ep (MV/m)                                         |                          |           | 45                       |          |         |            |
| Max Bp (mT)                                           |                          |           | 80                       |          |         |            |
| Amplitude regulation/cavity (% rms)                   |                          | 3.5 (foi  | r 2% luminosi            | ty drop  | )       |            |
| Relative RF Phase Jitter (deg rms)                    |                          |           | 0.069                    |          |         |            |
| Timing Jitter (fs rms)                                |                          | 49 (for   | 2% luminosi              | ty drop  | )       |            |
| Max Detuning (kHz)                                    | 240                      | 170       | 100 - 180                | 240      | 170     | 100 - 180  |
| Longitudinal impedance threshold (Ohm)                |                          | Cavity    | wakefield de             | bender   | nt      |            |
| Trasverse impedance threshold (MOhm/m) (X,Y)          |                          |           | <i>48.8, 61.</i> 7       |          |         |            |
| Cavity field rotation tolerance/cavity (mrad rms)     |                          | 5.2 (foi  | r 2% luminosi            | ty drop  | )       |            |
| Beam tilt tolerance (H and V) (mrad rms and urad rms) | 0                        | .35, 7.4  | for 2% lumin             | osity d  | rop)    |            |
| Minimum CC beam-pipe aperture size (mm)               | >25 (same as FD magnets) |           |                          |          |         |            |
| Minimum Exraction beam-pipe aperture size (mm)        | 20                       |           |                          |          |         |            |
| Beam size at CC location (X, Y,Z) (mm,um,um)          | 0.97, 66, 300            |           |                          |          |         |            |
| Beta function at CC location (X, Y) (m,m)             | 23200, 15400             |           |                          |          |         |            |
| Horizonal kick factor (kx) (V/pC/m)                   |                          |           | << 1.6 x 10 <sup>3</sup> |          |         |            |
| Vertical kick factor (ky) (V/pC/m)                    |                          |           | << 1.2 x 10 <sup>2</sup> |          |         |            |
| CC System operation                                   | a                        | ssume     | CW-mode o                | perat    | tion    |            |

Frequency (x3) Kick Voltage (x3)

CW operation required (Avoid LFD effects)



2 beam energy options → (plus ILC500 - 250/250)

#### Conservative pk Fields (Improve reliability)

#### CW operation required (Avoid LFD effects)

| Parameter                                             | ILC250 10Hz<br>Upgrade   |            |                          | ILC1000  |          |            |
|-------------------------------------------------------|--------------------------|------------|--------------------------|----------|----------|------------|
| Beam Energy (GeV) e+/e-                               | 125/125 500/500          |            |                          |          |          | 500        |
| Crossing Angle (mrad)                                 |                          |            | 14                       |          |          |            |
| Installation site (m from IP)                         |                          |            | 14                       |          |          |            |
| RF Repetition Rate (Hz)                               | 5                        |            | 10                       |          | 4        |            |
| Number of bunches                                     | 1312                     |            | 2625                     |          | 245      | 50         |
| Bunch Train Length (ms)                               | 727                      |            | 961                      |          | 89       | 7          |
| Bunch Spacing (ns)                                    | 554                      |            |                          | 366      | <u>5</u> |            |
| Beam current (mA)                                     | 5.8                      |            | 8.75                     |          | 7.6      | 6          |
| Operating Temp (K)                                    |                          |            | 2                        |          |          |            |
| Cryomodule installation length (m)                    |                          | 3.85 (inc  | orporating ga            | ate val  | ves)     |            |
| Horizontal beam-pipe separation (m)                   | 0.1967 (cent             | tre) ±0.02 | 266 (each end            | l of ins | tallatio | on length) |
|                                                       |                          |            |                          |          |          |            |
| Cavity Frequency (GHz)                                | 3.9                      | 2.6        | 1.3                      | 3.9      | 2.6      | 1.3        |
| Total Kick Voltage (MV)                               | 0.615                    | 0.923      | 1.845                    | 2.5      | 3.7      | 7.4        |
| Max Ep (MV/m)                                         |                          |            | 45                       |          |          |            |
| Max Bp (mT)                                           |                          |            | 80                       |          |          |            |
| Amplitude regulation/cavity (% rms)                   |                          | 3.5 (fo    | r 2% luminosi            | ity drop | ))       |            |
| Relative RF Phase Jitter (deg rms)                    |                          |            | 0.069                    |          |          |            |
| Timing Jitter (fs rms)                                |                          | 49 (fo     | r 2% luminosi            | ty drop  | ))       |            |
| Max Detuning (kHz)                                    | 240                      | 170        | 100 - 180                | 240      | 170      | 100 - 180  |
| Longitudinal impedance threshold (Ohm)                |                          | Cavity     | wakefield de             | pender   | nt       |            |
| Trasverse impedance threshold (MOhm/m) (X,Y)          |                          |            | 48.8, 61.7               |          |          |            |
| Cavity field rotation tolerance/cavity (mrad rms)     |                          | 5.2 (fo    | r 2% luminosi            | ity dro  | ))       |            |
| Beam tilt tolerance (H and V) (mrad rms and urad rms) | 6                        | ).35, 7.4  | (for 2% lumin            | osity a  | rop)     |            |
| Minimum CC beam-pipe aperture size (mm)               | >25 (same as FD magnets) |            |                          |          |          |            |
| Minimum Exraction beam-pipe aperture size (mm)        | 20                       |            |                          |          |          |            |
| Beam size at CC location (X, Y,Z) (mm,um,um)          |                          |            | 0.97, 66, 300            | )        |          |            |
| Beta function at CC location (X, Y) (m,m)             | 23200, 15400             |            |                          |          |          |            |
| Horizonal kick factor (kx) (V/pC/m)                   |                          |            | << 1.6 x 10 <sup>3</sup> |          |          |            |
| Vertical kick factor (ky) (V/pC/m)                    |                          |            | << 1.2 x 10 <sup>2</sup> |          |          |            |
| CC System operation                                   | assume CW-mode operation |            |                          |          |          |            |

Frequency (x3) Kick Voltage (x3)



2 beam energy options → (plus ILC500 - 250/250)

#### Conservative pk Fields (Improve reliability)

## Min CC beam-pipe size (Collimation constraints)

CW operation required (Avoid LFD effects)

| Parameter                                             | ILC250 10Hz<br>Upgrade |                 |                          | ILC1000  |                         |           |  |
|-------------------------------------------------------|------------------------|-----------------|--------------------------|----------|-------------------------|-----------|--|
| Beam Energy (GeV) e+/e-                               | 1                      | 125/125         | 5                        |          | 500/                    | 500       |  |
| Crossing Angle (mrad)                                 |                        |                 | 14                       |          |                         |           |  |
| Installation site (m from IP)                         | 14                     |                 |                          |          |                         |           |  |
| RF Repetition Rate (Hz)                               | 5                      |                 | 10                       |          | 4                       |           |  |
| Number of bunches                                     | 1312                   |                 | 2625                     |          | 245                     | 50        |  |
| Bunch Train Length (ms)                               | 727                    |                 | 961                      |          | 89                      | 7         |  |
| Bunch Spacing (ns)                                    | 554                    |                 |                          | 366      | 5                       |           |  |
| Beam current (mA)                                     | 5.8                    |                 | 8.75                     |          | 7.                      | 5         |  |
| Operating Temp (K)                                    |                        |                 | 2                        |          |                         |           |  |
| Cryomodule installation length (m)                    |                        | 3.85 (inc       | orporating ga            | ite vali | ies)                    |           |  |
| Horizontal beam-pipe separation (m)                   | 0.1967 (cent           | re) ±0.02       | 66 (each end?            | of ins   | of installation length) |           |  |
|                                                       |                        |                 |                          |          |                         |           |  |
| Cavity Frequency (GHz)                                | 3.9                    | 2.6             | 1.3                      | 3.9      | 2.6                     | 1.3       |  |
| Total Kick Voltage (MV)                               | 0.615                  | 0.923           | 1.845                    | 2.5      | 3.7                     | 7.4       |  |
| Max Ep (MV/m)                                         |                        |                 | 45                       |          |                         |           |  |
| Max Bp (mT)                                           |                        |                 | 80                       |          |                         |           |  |
| Amplitude regulation/cavity (% rms)                   |                        | 3.5 (fo         | r 2% luminosi            | ty drop  | ))                      |           |  |
| Relative RF Phase Jitter (deg rms)                    |                        |                 | 0.069                    |          |                         |           |  |
| Timing Jitter (fs rms)                                |                        | 49 (fo          | r 2% Iuminosi            | ty drop  | )                       |           |  |
| Max Detuning (kHz)                                    | 240                    | 170             | 100 - 180                | 240      | 170                     | 100 - 180 |  |
| Longitudinal impedance threshold (Ohm)                |                        | Cavity          | wakefield de             | pender   | nt                      |           |  |
| Trasverse impedance threshold (MOhm/m) (X,Y)          |                        |                 | 48.8, 61.7               |          |                         |           |  |
| Cavity field rotation tolerance/cavity (mrad rms)     |                        | 5.2 (fo         | r 2% luminosi            | ty drop  | )                       |           |  |
| Beam tilt tolerance (H and V) (mrad rms and urad rms) | C                      | ).35, 7.4       | (for 2% lumin            | osity d  | rop)                    |           |  |
| Minimum CC beam-pipe aperture size (mm)               |                        | > <b>25</b> (sa | me as FD m               | lagne    | ts)                     |           |  |
| Minimum Exraction beam-pipe aperture size (mm)        | 20                     |                 |                          |          |                         |           |  |
| Beam size at CC location (X, Y,Z) (mm,um,um)          | 0.97, 66, 300          |                 |                          |          |                         |           |  |
| Beta function at CC location (X, Y) (m,m)             | 23200, 15400           |                 |                          |          |                         |           |  |
| Horizonal kick factor (kx) (V/pC/m)                   |                        |                 | << 1.6 x 10 <sup>3</sup> |          |                         |           |  |
| Vertical kick factor (ky) (V/pC/m)                    |                        |                 | << 1.2 x 10 <sup>2</sup> |          |                         |           |  |
| CC System operation                                   | a                      | issume          | CW-mode o                | perat    | tion                    |           |  |

Frequency (x3) Kick Voltage (x3)

### **CC** Variants in Conceptual Design Stage



| Variant                   | ΑΚΑ       | Institute   | Mode | <b>RF Frequency</b> |
|---------------------------|-----------|-------------|------|---------------------|
| Double Quarter Wave       | DQW       | CERN/BNL    | TEM  | 1.3 GHz             |
| RF Dipole                 | RFD       | ODU/JLab    | TEM  | 1.3 GHz             |
| Wide Open Waveguide       | WOW       | BNL         | TEM  | 1.3 GHz             |
| Quasi-waveguide multicell | QMiR      | FNAL        | TEM  | 2.6 GHz             |
| Elliptical Racetrack      | Racetrack | Lancaster U | TM   | 3.9 GHz             |



### 1.3 GHz Double Quarter Wave (S Verdu-Andres/R Calaga – BNL/CERN)

- Design takes advantage of considerable experience gained with 400 MHz DQW cavity built and tested for HL-LHC.
- A 1.3 GHz variant for DQW modelled after the HL-LHC cavity with small modifications and operation at 90 degrees to provide a horizontal kick.
- Based on the Bpk and Epk specification two single-cell DQW cavities per beam would give 54% margin for the 125/125 GeV beams (or 6 for 1 TeV).
- Cavity compactness lends itself to a machined cavity ingot (at least the main body and interfaces).



Peter McIntosh – Crab Cavities for ILC, SRF23, Grand Rapids, USA





HL-LHC tuner





TESLA type

9

### 1.3 GHz RF Dipole (RFD) (S De Silva/J Delayen – ODU/JLab, USA)

- RFD takes advantage of several cavity variants ranging from 400 MHz to 952 MHz that have reached prototyping stage, with 400 MHz cavities applied for HL-LHC.
- No LOM to extract, 2 3 TESLA type HOM couplers on one side of cavity good mitigation to HOMs with the FPC/HOM couplers located outside helium vessel.
- Two single-cell RFDs to meet the 125/125 GeV requirement with 47% margin (or 6 for 1 TeV).
- Fabrication proposed employ hybrid machining or forming from medium grain ingot.





### 1.3 GHz Wide Open Waveguide (B Xiao – BNL, USA)

- Design extends from EIC design work (197/394 MHz) - contend with a large beam current and considerable HOM power.
- Large beam pipe utilized with fc above the fundamental, sufficient to allow HOMs to transmit to waveguide and coax absorbers.
- Design allows the FPC, PU and HOM damper all outside the helium vessel.
- Uses two single-cell WOW cavity for operation per beam in 125/125 GeV ILC design (or 5 for 1 TeV).
- Alternative **beam-pipe absorbers** also considered to simplify the design.
- Expect manufacture from Nb sheets.



Science and Technology Facilities Council





### 2.6 GHz Quasi-waveguide Multicell Resonator (A Lunin/Y Yakovlev– FNAL, USA)

- Design initially developed for an application at 2.8 GHz for APS SPX project.
- Proposal for 2.6 GHz with a 3-cell cavity, no LOM, no HOM couplers with sparse low Q SOM/HOMs and a WG coupler.
- The HOMs propagate down the beampipe and absorbed in SS beam-pipe sections.
- At operating voltage, a single 3-cell cavity provides 14% margin (or 4 for 1 TeV).
- Cavity to be produced by machining in two halves from fine grain Nb ingot, as done for APS SPX.











### **3.9 GHz Racetrack** (G Burt – Lancaster U, UK)

- Re-optimized original ILC crab cavity design evolving to a 3.9 GHz 3-cell cavity design.
- Using a racetrack geometry gives improved separation to the same-order-mode (SOM) and minimizes the peak magnetic fields.
- Frequency choice of 3.9 GHz allows lower required kick voltage.
- **Single 3-cell cavity** for specified kick of 0.615 • MV for the 125/125 GeV beams with 20% margin in Bp (or 4 for 1 TeV).
- A **2-cell variant** (improves trapped modes) considered – 2 cavities per beam provide 80% margin for 125/125 GeV kick requirement (design not so advanced).
- Expect to manufacture from Nb sheet material.

Peter McIntosh – Crab Cavities for ILC, SRF23, Grand Rapids, USA









Helium Tank

### **CC Down Selection #1 Review** 4<sup>th</sup> to 6<sup>th</sup> April @ KEK

#### https://agenda.linearcollider.org/event/9958/





Bob Laxdal (TRIUMF) - Chair

Eiji Kako (KEK)

Enrico Cenni (CEA)

Michele Bertucci (INFN)

Hiroshi Sakai (KEK)

Rong-Li Geng (ORNL)

Toshiyuki Okugi (BDS)

### **Review Panel Charge**



- 1. Assess the **predicted compliance** against the functional **specifications for the ILC-250**, the **upgrade capability** to the ILC-500, and the feasibility for higher energy (1TeV).
- 2. To **identify their risk in comparison to other comparable systems** presently in operation or in *development elsewhere in the world.*
- 3. *Review* choices of materials, fabrication processes, tuning concepts, power couplers, HOM couplers, SRF performance, *etc*.
- 4. Review the **plan for the prototype development** including possible cooperation (or consortium) with other laboratories and industry.
- 5. Identify **2 most appropriate crab cavity designs** to meet the operational requirements for ILC, to be **taken forward to prototype** development and high-power validation.
- 6. Provide suggestions for how best to progress the collaborative crab cavity developments, after the down-selection decision is to be made.
- 7. Provide advice for criteria and further processes to be scoped for the final CC downselection (post-prototype), towards unifying system design for cryomodule integration.

Peter McIntosh – Crab Cavities for ILC, SRF23, Grand Rapids, USA

### **Review Panel Criteria Utilised**



| Design Criteria              | Specifics                                                                                           | Weighting |
|------------------------------|-----------------------------------------------------------------------------------------------------|-----------|
| Cavity design                | Expected performance, thoroughness of design, characteristic parameters                             | 10        |
| Compliance with requirements | Margin and risks                                                                                    | 10        |
| HOM analysis/mitigation      | Thoroughness of analysis, appropriateness/complexity of mitigation                                  | 10        |
| Prototype development        | Logic, cost, risk, timeline, can the suggested timeline be reached                                  | 10        |
| Fabrication process          | Appropriateness of suggested path – risk/challenge                                                  | 10        |
| Cryomodule implications      | Risks, cost, complity for integration                                                               | 10        |
| ILC500?                      | Extendibility of design                                                                             | 10        |
| Overall risk                 | Degree of confidence that the proposal will meet the specifications with reasonable cost and effort | 10        |
| RF ancillaries: FPC, tuners  | Complexity, risk                                                                                    | 5         |
| Multipactor analysis         | Thoroughness of analysis, issues related to design                                                  | 5         |
| df/dP                        | Evaluation and related issues                                                                       | 5         |
| Cavity tuning analysis       | Thoroughness of analysis, correctness of approach                                                   | 5         |



### **Review Panel Feedback**



- The panel saw **no show-stoppers** in any of the proposals.
- <u>All had the potential</u> to meet the 125/125 and 250/250 GeV ILC variants with upgradeability to 500/500 GeV.
- Some were more advanced than others and some had more margin than others.
- Some required only 1 x cavity per beam and others 2 x cavities per beam to meet the 125/125 GeV baseline specification.
- All could meet the ILC500 (250/250) specification within the required space.

|                     | Freeseware | Demuired  |               | 125,                 | /125                   |        | 250/250       | 500/500       |               |
|---------------------|------------|-----------|---------------|----------------------|------------------------|--------|---------------|---------------|---------------|
| Variant             | (GHz)      | Kick (MV) | #<br>Cavities | Operating<br>Bp (mT) | Operating<br>Ep (MV/m) | Margin | #<br>Cavities | #<br>Cavities | Manufacture   |
| DQW                 | 1.3        | 1.85      | 2             | 49.5                 | 29                     | 55%    | 4             | 6             | Sheet & Ingot |
| Elliptical          | 3.9        | 0.615     | 1             | 67                   | 23                     | 20%    | 2             | 4             | Sheet         |
| RFD                 | 1.3        | 1.85      | 2             | 54                   | 30                     | 47%    | 4             | 6             | Sheet & Ingot |
| WOW                 | 1.3        | 1.85      | 2             | 46                   | 26                     | 72%    | 4             | 5             | Sheet         |
| QMiR                | 2.6        | 0.923     | 1             | 70                   | 35                     | 14%    | 1 or 2        | 4             | Ingot         |
| Elliptical (2-cell) | 3.9        | 0.615     | 2             | 44                   | 14                     | 82%    | 2             | 4             | Sheet         |

### **Review Panel Recommendations**



| Proposal\Committee | <b>C1</b> | C2 | C3 | C4 | C5 | Average           | Rank |
|--------------------|-----------|----|----|----|----|-------------------|------|
| Α                  | 76        | 83 | 80 | 87 | 86 | 82.4              | 1    |
| В                  | 70        | 87 | 75 | 84 | 66 | 76.4              | 2    |
| С                  | 83        | 62 | 74 | 82 | 71 | <mark>74.4</mark> | 3    |
| D                  | 42        | 77 | 56 | 80 | 53 | 61.6              | 4    |
| E                  | 61        | 61 | 62 | 70 | 54 | 61.6              | 4    |

- Based on the analysis the committee recommends Proposal A and Proposal B be given the opportunity to move to the prototyping phase.
- If for any reason one of these proposals has to drop out then we recommend Proposal C to be advanced.



### **Review Panel Recommendations**



| Proposal\Committee | C1 | C2 | C3 | C4 | C5 | Average | Rank |
|--------------------|----|----|----|----|----|---------|------|
| Α                  | 76 | 83 | 80 | 87 | 86 | 82.4    | 1    |
| В                  | 70 | 87 | 75 | 84 | 66 | 76.4    | 2    |
| C                  | 83 | 62 | 74 | 82 | 71 | 74.4    | 3    |
| D                  | 42 | 77 | 56 | 80 | 53 | 61.6    | 4    |
| E                  | 61 | 61 | 62 | 70 | 54 | 61.6    | 4    |

- Based on the analysis the committee recommends Proposal A and Proposal B be given the opportunity to move to the prototyping phase.
- If for any reason one of these proposals has to drop out then we recommend Proposal C to be advanced.
  - Proposal A RF Dipole ODU/Jlab
  - Proposal B QMiR FNAL
  - Proposal C Racetrack Lancaster U





Science and Technology Facilities Council

### Summary



### **Crab cavities critical for maintaining expected luminosity performance for ILC!**

- BDS requirements have been comprehensively integrated into the required CC specifications.
- All CC designs meet ILC250, ILC1000 (and ILC500) requirements no show stoppers!
- All meet ILC Interaction Region dimensional constraints even for highest energies!
- First down-selection review achieved an important milestone, for focussing next stage CC technology development.

The RFD (ODU/JLab) and QMiR (FNAL) designs are now being taken forward to prototype – both machined from ingot material!

• Early stage Nb procurement preparation underway – MG for RFD and FG for QMiR.

### Look forward to first test results and achieving final ILC CC down-selection ahead of SRF25!

Science and Technology Facilities Council

# MANY THANKS

Acknowledge: All CC design teams, KEK support and down-selection review panel!

