

SRF Cavity Testing: Tutorial

Walter Hartung

2023 SRF Conference Tutorial Michigan State University 23 Jun 2023

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

Topics

- Why?
- When?
- **-How?**
- Calibrations, analysis
- Steps
- Phenomena
- Diagnostics

Cavity Testing: Why?

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science
Michigan State University

Cavity Testing: Why?

- Development
- Prototyping
- **Production**
- Repair, refurbishment
- Example: FRIB production

FRIB Resonators

FRIB Resonator Parameters

FRIB Linac

S3 Cryomodules

LS1 Cryomodules

User operations began May 2022

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Cryomodules

Cavity Testing: When?

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Example: FRIB Cavity Production Steps

- **Fabrication**
- Jacketing
- **Borescope inspection**
- Heavy etch
- **Borescope inspection**
- **Heat treatment**
- **E** Light etch
- HPWR
- Clean Room assembly
- Cold test
- Cold mass assembly
- Cryomodule assembly

Cavity Preparation Steps: FRIB

Heat treatment (β = 0.043 QWR) Chemical etching

(BCP of β = 0.086 QWR)

Rinsing: high-pressure ultra-pure water in clean room (HPWR of β = 0.29 HWR)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Cavity Testing: How?

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Things We Need

- **RF Couplers**
- **-Cleanliness**
- Vacuum
- Magnetic shielding
- Cold
- Personnel protection
- RF power
- ■RF control
- Diagnostics

Things We Need

- **RF Couplers**
- Cleanliness
- Vacuum
- Magnetic shielding
- Cold
- Personnel protection
- RF power
- **RF** control
- ■Diagnostics

Things We Measure

- RF power (warm)
- Bath pressure (warm)
- Cavity temperature (cold)
- Liquid level (cold)
- X-ray flux (warm)
- Static magnetic field? (cold)

Test Prep: FRIB jacketed cavities

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Test Prep: FRIB jacketed cavities

β = 0.041 into Dewar

Radiation shield installation

Free Oscillation: Undriven cavity

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Driven cavity

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science
Michigan State University

RF Measurements and Analysis

Calculate

Measure: CW

- ω = angular frequency
- P_f = forward power
- *P^r* = reverse power
- P_t = transmitted power

Measure: Modulated τ _l = decay time Over-/under-coupled $(P_e =$ emitted power)

 P_d = dissipated power *U* = stored energy *Q^L* = loaded quality factor β_1 = input coupling factor β_2 = pickup coupling factor Q_0 = intrinsic quality factor *Qext*,1 = input coupling strength *Qext*,2 = pickup coupling strength

Infer

from cavity model

- *R^s* = surface resistance
- *E^a* = accelerating gradient
- E_p = peak surface electric field
- B_p = peak surface magnetic field
- *V^a* = accelerating voltage

Input Coupler: matched vs mismatched

Variable coupler: KEK design

Variable input coupler for the vertical test in KEK

Kenji Saito

Cavity Testing: Calibrations, analysis

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Imperfect RF system: mismatch

Cables + circulator + directional coupler: forward power coupling for different cable terminations

Systematic Errors: analysis

U.S. Department of Energy Office of Science Michigan State Universit

FRI

Systematic Errors: analysis and correction Examples of Recent Work

Measurements, calibrations, error analysis

T. Powers, "Theory and Practice of Cavity RF Test Systems," in *Proc. SRF 2005*, Ithaca, NY, USA, Paper SUP02, p. 40-70.

Assessment of imperfect directivity, stray reflections, off-resonance errors; mitigations

J, Holzbauer et al, "Systematic uncertainties in RF-based measurement of superconducting cavity quality factors," *Nucl Instrum Methods Phys Res A*, **830**, p. 22-29 (2016).

Assessing and correction errors with vector approach

J. Holzbauer et al, "Improved RF measurements of SRF cavity quality factors," *Nucl Instrum Methods Phys Res A*, **913**, p. 7-14 (2019).

Analysis of RF measurements: supplemental parameters

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Resonant frequency dependence on bath pressure

Measurements: 8 FRIB β = 0.53 HWRs

Resonant frequency dependence on bath pressure

Measurements: 6 FRIB β = 0.29 HWRs

Resonant frequency dependence on bath pressure

FRIB

Dewar Cert Tests of β = 0.53 HWRs: SCM516 Measurements: 8 FRIB β = 0.53 Jan-Apr 2019 ι _{mech} polish HWRs, $T \approx 2 K$ $T \approx 2 K$ t plunger tuned; x baked</sup></sup> 68 **Frequency vs field** \mathcal{L} ∞ $f-f_0$ (kHz) 56 52 $\frac{8}{3}$ $\overline{4}$ Θ 10 12 Ω E_a (MV/m)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

W. Hartung, Cavity Testing 23 Jun 2023, Slide 29

149

 $-JAN-2020$

 \dot{c}

 x tr

fd

 -0.59

516

 $b530$

14

- Measurements: 8 FRIB β = 0.53 HWRs, $T \approx 2 K$
- **Frequency vs field squared**

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Dewar Cert Tests of β = 0.53 HWRs: SCM516 Measurements: 8 FRIB β = 0.53 Jan-Apr 2019 ι _{mech polish} t plunger tuned; x baked</sup></sup> $T \approx 2 K$ HWRs, $T \approx 2 K$ $0.\overline{8}$ Compensate for bath pressure 148 151 $0.\overline{6}$ 154 $146^{2i,t}$ -149 $P_i)$ (kHz) $-JAN-2020$ $\overline{0}$ $-(dfdP)(P$ \dot{c} 0.2 ഗ $b530_516_e20_1fd_xtra$ f_i^\prime \circ \mathbf{I} -0.2 -0.4 Ω 20 40 60 80 100 120 140 160 180 200 E_a^2 [(MV/m)²]

changes

FRIB

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Low-field losses: BCS and residual

$$
R_s(T) = R_0 + C_{\text{RRR}} R_1 \frac{T_{\Delta}}{T} \left(\frac{f}{f_1}\right)^2 \exp\left(-\frac{T_{\Delta}}{T}\right), \quad (1)
$$

where T is the temperature, f is the rf frequency, T_{Λ} = 17.67 K, $R_1T_A = 2 \times 10^{-4}$ QK, and $f_1 = 1.5$ GHz; R_0 is the temperature-independent residual surface resistance. The coefficient C_{RRR} is 1 for reactor grade Nb (RRR = 25) and about 1.5 for high purity Nb with $RRR = 250$. As the surface purity can be different from the bulk purity, C_{RRR} can be considered to be a fitting parameter. Equation (1) is valid for $f \ll 1$ THz and $T \leq 4.6$ K.

From C. Compton et al, *Phys Rev ST Accel Beams* **8**, 042003 (2005); adapted from textbook by Padamsee, Knobloch, & Hays

Low-field losses: BCS and residual

U.S. Department of Energy Office of Science

Michigan State Universit

Cavity Testing Steps: FRIB Production Example

- Warm RF calibrations
- Cool down/cold RF calibrations

Fill

- ~4.2 K measurements
	- CW; modulated; (de)condition
- \blacksquare Pump to \sim 2 K + low-field measurements
- \sim 2 K measurements
	- CW; modulated; (de)condition
- Cold RF calibrations
- Warm up/warm RF calibrations

Cavity Testing: What do we see? What do we learn?

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Multipacting

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science
Michigan State University

Example: barriers for FRIB β **= 0.086 QWR**

Example: barriers for FRIB β **= 0.54 HWR**

Multipacting Barriers in FRIB Resonators

MP Conditioning Times: FRIB resonators

C. Zhang et al, *Nucl Instrum Methods Phys Res A*, **1014**, 165675 (2021)

Field Emission

Facility for Rare Isotope Beams
U.S. Department of Energy Office of Science
Michigan State University

Field emission example: FRIB β = 0.53 HWR

U.S. Department of Energy Office of Science Michigan State University

Field emission: RF conditioning FRIB β = 0.085 QWR

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Field emission: RF conditioning, or not FRIB β **= 0.53 HWR**

Field emission: RF conditioning, or not FRIB β **= 0.53 HWR**

Field emission "rework" Steps

- ■Repeat water rinsing
- Repeat etching and rinsing
- Repeat borescope inspection, guided repair
- **Ideal world: locate with diagnostics** + guided repair

Figure 2: HWR polishing using the borescope (right) and a manual polishing tool (left).

Figure 3: Examples of cavity polishing tools. The tools are bent as needed to reach features via the available access ports.

C. Compton et al, SRF 2019, MOP005

Field emission reduction via guided repair: mechanical polishing

C. Compton et al, SRF 2019, MOP005

Example: Q_0 **and X-rays for FRIB** β **= 0.53 HWRs**

- Gray: certified
- Colors: FE rework
- Red: before rework
- Magenta: during rework
- Green: after rework
- Solid: at 8.9 MV/m

FRII

Hollow: at max field, below 8.9 MV/m

W. Hartung et al, NAPAC 2019, MOPLO17

W. Hartung, Cavity Testing 23 Jun 2023, Slide 49

FRIB resonators: field emission reworks

FRIB Production Statistics

C. Zhang et al, *Nucl Instrum Methods Phys Res A*, **1014**, 165675 (2021)

Rare phenomena (we would like to think)

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Thermal Breakdown

C. Zhang et al, *Nucl Instrum Methods Phys Res A*, **1014**, 165675 (2021)

FRIB Cavity Examples: "*Q***-switch"**

C. Compton et al, SRF 2019, MOP005

FRIB Cavity Example: *Q***-switch mitigation with polishing**

C. Compton et al, SRF 2019, MOP005

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Figure 10: Polishing of S53-128 feature: (a) as received, before etching; (b) after etching and test; (c) after initial polishing, "opening up"; (d) shelving with void underneath; (e) top material removed, blending void area to adjacent surface; (f) fragment broken off during polishing.

Cavity Testing: Supplemental diagnostics

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

Thermometry: Rotating Example

Thermometry: Fixed Example

FRIB

Facility for Rare Isotope Beams

U.S. Department of Energy Office of Science Michigan State University

X-ray energy spectrum measurements: Example

Energy (keV)

Figure 2: A typical x-ray energy spectrum from a β =0.47 single cell cavity measured on top of the Dewar lid [2]. The peak electric field level in the cavity was 21.88MV/m and the maximum electron kinetic energy 1200 keV.

S. Musser et al, PAC 2003, TPAB068

Second Sound: Localize thermal breakdown sites

Z. Conway, SRF 2009, TUOAAU05

Multi-mode measurements example: fundamental passband

Electric field along the axis of a 6 cell cavity for modes in the fundamental passband (Susan Musser, *X-Ray Imaging of Superconducting Radio Frequency Cavities*, PhD Dissertation, MSU, 2006, Fig. 5.3)

Cavity Testing: Special systems and methods

- ■"Integrated" test setups
- "Horizontal" test cryostats
- Cryomodule tests
- ■"Online" testing

Summary

- Cavity testing is an important part of SRF endeavors, including development, production, and operation
- Testing methods for different cavities and different facilities are similar, with some variations
- Important aspects: calibrations, analysis, attention to systematic errors
- **"The Proof Of The Pudding Is In The Eating"**

More Information

Past SRF conference tutorial sessions

- •2021: J. Popielarski; emphasis on certification criteria, safety; cryomodule testing
- •2019: T. Powers: emphasis on RF system, analysis, errors, math

•And so on…

Books

- •H Padamsee, Jens Knobloch, Tom Hays, RF Superconductivity for Accelerators, Wiley, New York, 1998, Chapt. 8
- SRF courses at accelerator schools
	- •USPAS
	- •CERN Accelerator School
	- •And so on…

