

Cavity Beam Interaction /HOMs and Dampers

Michiru Nishiwaki SuperKEKB group (KEK) SRF2023 Tutorial, FRIB/MSU June 23, 2023 High-current electron-positron ring collider

High Beam Current-related issues in RF system

In RF system of high beam current electron (positron) ring accelerator such as SuperKEKB, there are many challenging issues to realize the stable and high-performance beam operation.

- Large Beam Power Handling (Optimization for beam loading)
	- ØOptimum tuning, Optimum coupling
	- \triangleright Phase difference among RF stations to share the beam power
- **Instabilities due to accelerating mode**
	- \bullet Coupled Bunch Instability (CBI) related to $\mu = -1$, -2 and -3 modes
		- ØNew CBI damper system
	- Zero-mode related to Robinson stability
		- ØDirect RF feedback (DRFB)
		- ØZero-mode damper (ZMD)
- Coupled Bunch Instability (CBI) due to Higher-Order modes (HOMs)

ØARES and SCC are designed as HOM-damped structure with HOM absorbers.

ØAdditionally, a bunch-by-bunch feedback system is effective.

Contents

- ◆ Optimization for Beam Loading
	- Impedance Characteristics of Cavity (Equivalent Circuit Model)
	- Frequency Spectrum of Beam
	- **Optimum Tuning**
	- Optimum Coupling
- \blacklozenge Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)
- \triangle HOM
	- l HOM damping in KEKB SCC
	- Large HOM power in KEKB and SuperKEKB

Definitions of Basic Terms in this Lecture

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 4

Super KEKB

Contents

- ◆ Optimization for Beam Loading
	- Impedance Characteristics of Cavity (Equivalent Circuit Model)
	- **Frequency Spectrum of Beam**
	- **Optimum Tuning**
	- **Optimum Coupling**
- ◆ Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\blacklozenge HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

Equivalent Circuit Model of Cavity

Frequency Dependence of Cavity Response (Impedance)

Equivalent Circuit Model of Cavity

Frequency Dependence of Cavity Response (Impedance)

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 7

Equivalent Circuit Model of Cavity

Frequency Dependence of Cavity Response (Impedance)

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 8

Consideration of Beam

Contents

◆ Optimization for Beam Loading

- Impedance Characteristics of Cavity (Equivalent Circuit Model)
- Frequency Spectrum of Beam
- **Optimum Tuning**
- **Optimum Coupling**
- ◆ Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\blacklozenge HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

Frequency Spectrum of Bunched Beam

A gaussian bunch passing through the cavity only once

 σ_z : bunch length

The width of the spectrum is depending on the bunch length.

Frequency Spectrum of Bunch Train

Ideal bunch train

- No difference between all bunches
- Gaussian shape
- Equal spaced bunches with interval of T_h
	- Width of impedance of cavity is enough narrow. = high Q_L

considering only near ω_{rf}

$$
\bullet \ \sigma_{\omega} \gg \omega_{rf} \qquad (\sigma_{z} \ll \lambda_{rf})
$$

$$
i_b(\omega_{rf}) \sim 2I_b \exp\left(-\frac{\omega_{rf}^2}{2\sigma_\omega^2}\right) \sim 2I_b
$$

Contents

◆ Optimization for Beam Loading

- Impedance Characteristics of Cavity (Equivalent Circuit Model)
- **Frequency Spectrum of Beam**
- **Optimum Tuning**
- Optimum Coupling
- ◆ Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\blacklozenge HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

Beam is accelerating at the synchronous phase.

In the electron storage ring, the beam is bunched at the synchronous phase ϕ_s to balance the radiation loss.

According to "**The Principle of Phase Stability**", the restoring force works around the phase ϕ_s . Beam particles oscillate around ϕ_{s} .

= Synchrotron oscillation

Super KEKB

Cavity Voltage V_c in Beam Acceleration

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 15

Cavity Voltage V_c in Beam Acceleration

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 16

Efficiency by Optimum Tuning

Example of SuperKEKB, SC cavity operating parameters in I_h =500mA

SCC operating parameters

Vref [MV]:	1.5
Фs [deg]:	80
$R/Q [\Omega]$:	93
QL:	50000
f_rf [MHz]: 508.9	

 $P_k \propto V_{kr}^2$

without Optimum tuning

with Optimum tuning

Efficiency by Optimum Tuning

Example of SuperKEKB, SCC operating parameters in I_h =2.6 A

Optimum Tuning by Auto-tuner Control

Optimum tuning is also effective to suppress the coupled bunch instability ($\mu \geq 0$ modes).

In the high current ring, the optimum detuning is indispensable.

But the detuning frequency should be smaller than revolution frequency to avoid instability.

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 20

Super KEKB

Contents

◆ Optimization for Beam Loading

- Impedance Characteristics of Cavity (Equivalent Circuit Model)
- **Frequency Spectrum of Beam**
- **Optimum Tuning**
- Optimum Coupling
- ◆ Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\blacklozenge HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

 β **should be set to make matching for zero reflection with beam acceleration. (Dissipation is** $P_c \rightarrow P_c + P_h$ **in cavity.)**

Equation (1) The equation is given by:

\n
$$
\beta = \frac{Q_0}{Q_{\text{ext}}} = \frac{P_{\text{ext}}}{P_c} \qquad \Gamma = \frac{\beta - 1}{\beta + 1} \qquad \beta = 1
$$
\nEquation (2) The equation is given by:

\n
$$
\beta = \frac{Q_0}{P_c} = \frac{P_{\text{ext}}}{P_c} \qquad \beta = 1
$$
\nEquation (2) The equation is given by:

\n
$$
P_c: \text{Wall loss (for } V_c \text{ excitation}) \quad |V_c|^2 = R_{\text{sh}} P_c
$$
\n
$$
P_b: \text{Feeding power to Beam } I_b \qquad P_b = I_b V_c \cos \phi_s
$$
\n
$$
P_k = P_c + P_b \qquad \text{(expecting with } P_r = 0)
$$
\nOptimum Coupling

\n
$$
\beta' = \frac{P_{\text{ext}}}{P_c + P_b} = \frac{\beta P_c}{P_c + P_b} \qquad \beta_{\text{opt}} = 1 + \frac{P_b}{P_c}
$$

 $\beta' = 1$ is matching condition with beam.

In general, β cannot be changed during the machine operation. It is important to choose the optimum coupling with margin in design and manufacturing.

If the beam current increase more than I_h , P_h increase and $\beta' < 1$. (=looks like Under Coupling). It is better to design with a margin for P_h .

 P_{c}

Super **KEKB**

Example of SuperKEKB HER $(I_h=2.6 A)$

Normal Conducting Cavity (ARES)

 $V_c = 0.5$ MV, $P_c = 150$ kW, $\phi_s = 65^\circ$

$$
P_b = 2.6A \times 0.5MV \times \cos 65^\circ \sim 550 kW
$$

$$
\beta_{opt} = 1 + \frac{P_b}{P_c} = 1 + \frac{550 \text{ [kW]}}{150 \text{ [kW]}} \sim 4.7
$$

Superconducting Cavity (SCC) $\beta_{opt} = 1 +$ P_b P_c $= 1 +$ 475 [kW $\frac{75 \text{ [kW]}}{24 \text{ [W]}} \approx 2 \times 10^4$ Q_L or Q_{ext} are used as the input coupling in SC cavity. $V_c = 1.5$ MV, $P_c = 24$ W, $\phi_s = 83^\circ$

Optimum coupling
$$
(P_k \approx P_b, Q_L \approx Q_{ext} \ll Q_0)
$$

$$
Q_{ext,opt} \approx \frac{V_c}{\left(\frac{R_{sh}}{Q_0}\right)I_b \cos \phi_s} = \frac{1.5 \text{MV}}{930 \times 2.6 \text{A} \times \cos 83^\circ} \sim 5 \times 10^4
$$

Super KEKB

Required Klystron Power for SuperKEKB

Required Klystron Power for SuperKEKB

Superconducting Cavity (SCC) optimum tuning

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 25

Required Klystron Power for SuperKEKB

Normal Conducting Cavity (ARES) optimum tuning

Contents

- ◆ Optimization for Beam Loading
	- Impedance Characteristics of Cavity (Equivalent Circuit Model)
	- **Frequency Spectrum of Beam**
	- **Optimum Tuning**
	- **Optimum Coupling**
- \blacklozenge Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to μ =-1, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\blacklozenge HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

CBI excited by wake fields

Evaluation of CBI - Instability occur or not. -

Coupling Impedance and Growth rate of CBI

Instability occur in **CST** a structure (cavity)? Voltage $V(\omega)$ induced in structure by beam current $I(\omega)$, Coupling Impedance Evaluate "Coupling Impedance" with beam $\mathbf{V}(\omega) = -\mathbf{Z}(\omega)\mathbf{I}(\omega)$ **Oscillation mode** µ **:** $\zeta(t) \propto e^{\alpha_{\mu}t} = e^{t/\tau_{\mu}}$ Induced Voltage Beam Current $\alpha_{\mu} = \frac{1}{\tau_{\mu}} \propto \text{Re}\left\{Z(\omega_{\mu})\right\}$ growth rate Longitudinal mode : $V_{\parallel}(\omega) = -Z_{\parallel}(\omega) I(\omega)$ (accelerating mode) ω_{μ} : angular frequency of mode μ $\propto e^{-\alpha_{rd}t}$ radiation damping $\mathbf{V}_{\perp}(\omega) = -\mathbf{Z}_{\perp}(\omega)\mathbf{I}(\omega)$ Transvers mode: stable condition $\alpha_{\mu} < \alpha_{\nu}$

Wake function and coupling impedance

Wake function and coupling impedance

Frequency spectrum of Beam

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 33

Super KEKE

Frequency spectrum of Beam

Multi bunches in a ring

All RF buckets are filled by bunches (point charge, number of bunch = h, Synchrotron oscillation $\omega_s t$)

Phase difference of oscillation between neighbor bunches : $\Delta\theta_h$

There are μ oscillation modes in one turn.

In the actual bunch, many particles are oscillating, resulting in a superposition of modes.

Since bunches are circulating a ring with revolution time of $T_{rev} = \frac{1}{r_{rev}}$, beam spectrum has frequency of $\mu f_{\infty} \pm f_{\infty}$

Frequency spectrum of Beam

All RF buckets are filled by bunches (number of bunches = h, oscillation mode μ)

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 36

Evaluation of growth rate from impedance

$$
\zeta(t) \propto e^{\alpha_{\mu}t} = e^{t/\tau_{\mu}}
$$
\n
$$
\zeta(t) \propto e^{\alpha_{\mu}t} = e^{t/\tau_{\mu}}
$$
\n
$$
\zeta(t) \propto e^{\alpha_{\mu}t} = A I_{b} \sum_{p=0}^{\infty} \left\{ \frac{f_{p}^{(\mu+)} \text{Re} Z \left(f_{p}^{(\mu+)} \right) - f_{p}^{(\mu-)} \text{Re} Z \left(f_{p}^{(\mu-)} \right) \right\}}{f_{p}^{(\mu+)} = phf_{rev} + \mu f_{rev} + f_{s} = pf_{rf} + \mu f_{rev} + f_{s}}
$$
\n
$$
f_{p}^{(\mu-)} = (p+1)hf_{rev} - \mu f_{rev} - f_{s} = (p+1)f_{rf} - \mu f_{rev} - f_{s}
$$
\n
$$
hf_{rev} = f_{rf}
$$
\n
$$
\zeta(t) \sim 1
$$
\n $$

Growth rate of CBI due to accelerating mode

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 38

Reduction of detuning frequency

: Accelerator Resonantly coupled to Energy Storage

Unique cavity specialized for KEKB

Impedance of ARES

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 44

K. Hirosawa et al., Nucl. Instrum. Methods. Phys. Res. A 953 (2020) 163007.

Super **KEKB**

Estimation of the growth rates of CBI

Threshold currents for μ =-1 mode are quite below the design current. When there are parked cavities, μ =-2 mode also has no margin. New CBI damper system has been developed and installed.

K. Hirosawa et al., Nucl. Instrum. Methods. Phys. Res. A 953 (2020) 163007.

Super KEKB

CBI damper system in SuperKEKB

K. Hirosawa et al., Nucl. Instrum. Methods. Phys. Res. A 953 (2020) 163007.

Example of CBI damper operation

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 47

Super **KEKB**

Contents

- ◆ Optimization for Beam Loading
	- Impedance Characteristics of Cavity (Equivalent Circuit Model)
	- **Frequency Spectrum of Beam**
	- **Optimum Tuning**
	- **Optimum Coupling**
- \blacklozenge Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\blacklozenge HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

Static Robinson Instability

K.Akai, PRAB **25**, 102002 (2022). T.Yamaguchi et al., PRAB **26**, 044401 (2023).

This is another type of longitudinal instability related to the accelerating mode. This instability arises from the **coherent synchrotron oscillation** where all bunches oscillate in the **same phase (zero-mode)**.

This instability limits the maximum beam current stored in high-current ring accelerators.

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring

Suoer **CEKE**

Efficiency by optimum tuning

Example of SuperKEKB, SCC operating parameters in $I_h=2.6$ A

K.Akai, PRAB **25**, 102002 (2022).

Static Robinson Instability in SuperKEKB

- **•** In SuperKEKB, static Robinson instability is expected in the high current operation.
- In the beam operation, there are FB system called Direct RF feedback (DRFB) and Zero-mode damper (ZMD).

- \blacklozenge The higher beam current can be stored stably by DRFB and ZMD in beam study.
- There is no discrepancy between the quantitative analysis and the beam study results.
- Coherent oscillation instability is not a problem with the DRFB and ZMD so far.

酋

1000

Contents

- ◆ Optimization for Beam Loading
	- Impedance Characteristics of Cavity (Equivalent Circuit Model)
	- **Frequency Spectrum of Beam**
	- **Optimum Tuning**
	- **Optimum Coupling**
- ◆ Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\triangle HOM

- l HOM damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

Necessity of HOM damping

The beam also excites the RF field of higher-order modes (HOMs) in the cavity.

HOM fields accumulate in multi passes of bunches and finally causes instability and loss of the beam.

Since the beam-induced field is proportional to the beam intensity, the problem due to HOMs becomes more serious in high-intensity accelerators.

In addition, the beam in high-current storage rings is distributed in a large number of bunches.

HOMs have to be damped sufficiently to avoid multi-bunch instabilities.

Wakefield in pillbox

- Without damper system
- Wake remains long time.
- Next bunches pass through in the wake.
- CBI will occur.

Reduction of coupling impedance of cavity

(ARES, HOM-damped cavity with SiC damper) due to each HOM mode

In principle, the beam instability could be avoided by just tuning a few dangerous modes at safe frequencies (somewhere between the driving frequencies of the instabilities).

But, in a large ring with high current beam, it is unrealistic to tune all dangerous modes at the same time.

In SuperKEKB,

- f_{rev} ~100 kHz (beam spectra are everywhere)
- Various bunch filling pattern (beam spectrum is not fixed)

The impedance of longitudinal and transverse HOMs must be sufficiently reduced to satisfy $\tau_g^{-1} < \tau_{rd}^{-1}$.

> τ_{rd}^{-1} : Radiation damping rate τ_g^{-1} : Growth rate of instability

The evaluation of the growth rate is the same as the CBI.

How to Reduce Impedance of Cavity

The **reduction of** $^R\!/_Q$ **and** Q_L of dangerous HOM modes in cavity is important.

- How to reduce $R_{\text{/}Q}$ and Q_{L} of HOMs in SC cavities, 1. Use of couplers (antennas, loops, waveguides) to extract HOMs
- 2. Design of HOM damped structure
	- single-cell
	- large-diameter beam pipes with absorbers To damp lower frequency dipole modes,
	- further enlarge beam pipe (KEKB)
	- fluted beam pipe (CESR-B) TPS (KEKB-type) CESR
• fluted beam pipe (CESR-B)

SCC is designed for KEKB and still operating in SuperKEKB.

Optimized cell shape and ferrite absorbers

HIPped Ferrite (thickness: 4mm)

The HOM damping characteristics of absorbers depend on the geometrical parameters.

Optimization of ferrite dampers

Optimized parameters

- Distance from cavity
- Length and thickness of ferrite
- Taper shape between dampers and beam duct
- etc...

HOM spectra obtained by network analyzer a) Al model cavity without Ferrite

Many modes are damped by optimization.

Suoer KEKE

Optimization of ferrite dampers

Measured frequencies and *Q*^L values of HOM modes with optimized ferrite dampers

mode	Frequency	R/Q	Q
LBP/TM ₀₁	782.7460	0.29000	196
LBP/TM ₀₁	834.3830	0.32200	100
LBP/TM_{01}	918.9360	1.20460	60
LBP/TM ₀₁	1002.5400	5.79200	42
TMen	1018.3800	11.58400	170
TM_{020}	1032.7500	1.48260	15
SBP/TM_{01}	1065.8199	1.23480	106
SBP/TM ₀₁	1130.9900	2.20000	74
TM_{030}	1607.5200	6.48800	300

⁽b) Dipole

R/Q and (R/Q)' are calculated values.

Wake field in KEKB SC cavity

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 60

Suoer V_mEKB

 $9.09 -$

HOM load estimation

 \overline{n}

• To estimate the heat load of ferrite damper, broad-band HOMs have to be also considered.

 \overline{n}

 ω_n

 \overline{R}

 $Q\big\vert_{n}$

4

 $k_n = \sum_{n=1}^{\infty}$

- The shorter-length bunch has higher frequency modes.
- Higher frequency HOM modes can be excited.

Total heat load becomes larger.

A sum of individual loss factors of HOM modes

Total power loss of beam bunches

Bunch charge q Average beam current $I_{\boldsymbol{b}}$

example 100mA, 1V/pC, 1nC $=$ > 100W

Loss Factor k

$$
P_{total}[\text{kW}] = k[\text{V/pC}] \frac{(I_b[\text{mA}])^2}{N_b \cdot f_{rev}[\text{kHz}]} \quad \begin{bmatrix} \uparrow \\ \uparrow \end{bmatrix}
$$

Number of bunches N_h Revolution frequency f_{rev}

HOM load can be estimated by Loss Factor of the cavity system.

We can get the loss factor including dampers by using simulation codes such as CST particle studio.

Contents

- ◆ Optimization for Beam Loading
	- Impedance Characteristics of Cavity (Equivalent Circuit Model)
	- **Frequency Spectrum of Beam**
	- **Optimum Tuning**
	- **Optimum Coupling**
- ◆ Instabilities due to Accelerating Mode
	- Coupled Bunch Instability (CBI) related to $m=-1$, -2 and -3 modes
	- Static Robinson Instability (zero-mode)

\triangle HOM

- **IDM** damping in KEKB SCC
- Large HOM power in KEKB and SuperKEKB

SCC Module of SuperKEKB

8 cavities in the electron ring

A Pair of Ferrite HOM dampers \triangleright SBP damper : ϕ 220 x t4 x L120 \blacktriangleright LBP damper : ϕ 300 x t4 x L150

Copper Pipe for Cooling

HIPped Ferrite

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 19

HOM power in KEKB operation

Study of HOM power for SuperKEKB

- Much HOM power emit through the downstream beam pipe.
- The emitted power becomes the additional load of the next cavity's ferrite dampers.

Additional SiC Damper

The emission power is reduced to one-third in the simulation study.

Results of Beam Test with SiC Damper

Evaluation of HOM power in higher beam current

The slope of linear fit is the apparent loss factor. Equivalent Loss Factor (Eq.LF) k_{eq} [V/pC]

$$
k_{eq} \text{ [V/pC]} = \frac{P_{abs} \text{ [kW]} \cdot f_{rev} \text{ [kHz]}}{(I_b \text{ [mA]})^2 / N_b}
$$

The absorption power is expected to be higher than the allowable level for the ferrite dampers in the design current.

More SiC dampers or some other measures are necessary.

Consideration of Build-up field

In recent beam operation, bunch interval dependence was observed in the absorbed power.

Build-Up of HOM fields Decay time of HOM fields $(\tau_{d,n})$ $>$ Bunch interval (τ_h)

In addition to evaluating the loss factor, the effects of the build-up of HOM fields must be considered.

example of KEKB SCC:

$$
f_{HOM} = 1 \text{GHz}, Q_{L,1 \text{GHz}} = 100 \qquad \tau_{d,1 \text{GHz}} \sim 30 \text{ns}
$$

see Okada-san's poster in SRF2023 **6/26 (Mon.) MOPMB068**

Summary

- This lecture explained the optimum tuning, optimum coupling, CBI and HOM damping, which are more important for accelerators with the high current beams, by showing the actual examples of KEKB and SuperKEKB operation.
- In designing your SRF system, the beam-cavity interaction should be well understood, and the LLRF control system and the high-power supply system should also be well considered.
- The parameters of SRF system should have sufficient margins. Your system may be used by the next generation of researchers. The margins will help them.
- This lecture dealt mostly with qualitative matters. The underlying equations and other aspects are explained in detail in many textbooks. Please refer them.

Thank you for your attention.

2023/6/23 FRIB/MSU SRF2023 Tutorial, M.Nishiwaki (KEK), Beam-Cavity Interaction in High Current Storage Ring 70

- \blacklozenge T. Kobayashi, "RF system (2) " in OHO'19 (2019) , in Japanese.
- \blacklozenge K. Akai, "RF system" in OHO'94 (1994), in Japanese.
- \blacklozenge S.Kurokawa et.al., Proc. of the Asian accelerator school, Huairou and Beijing, China, 1999, "Physics and Engineering of High-Performance Electron Storage Rings and Application of Superconducting Technology" WORLD SCIENTIFIC, Feb. 2002.
	- K. Akai, "RF System for Electron Storage Rings"
	- T. Furuya, "Superconducting Cavity"
- ◆ K. Akai, "RF Issues for High Intensity Factories", in Proc. of EPAC'96, Sitges, Spain, Jun. 1996, TUX03A.
- ◆ T.Tajima, "Development of Higher-Order-Mode (HOM) Absorbers for KEKB Superconducting Cavities", KEK Report 2000-10(2000).
- **Wilson, Slater, Pedersen, Chao, etc**