Commissioning and First Operation of the LCLS-II Linac

Dan Gonnella, SC-Linac-Physics Department Head On behalf of the LCLS-II Collaboration

26 June 2023

BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT BOLD PEOPLE VISIONARY SCIENCE REAL IMPACT

Outline LCLS-II Overview

Installation & Cool Down

Cavity Commissioning Results

SC Linac & Beam Commissioning

Summary & Outlook

LCLS-II Overview

Performance Measure	Threshold	Objective			
Variable gap undulators	2 (soft and hard x-ray)	2 (soft and hard x-ray)			
Superconducting linac-based FEL system					
Superconducting linac electron beam energy	3.5 GeV	≥4 GeV			
Electron bunch repetition rate	93 kHz	929 kHz			
Superconducting linac charge per bunch	0.02 nC	0.1 nC			
Photon beam energy range	250–3,800 eV	200–5,000 eV			
High repetition rate capable end stations	≥ 1	≥ 2			
FEL photon quantity (10 ⁻³ BW) per bunch	5x10 ⁸ (10x spontaneous) @2,500 eV	> 10 ¹¹ @ 3,800 eV			
Normal conducting linac-based system					
Normal conducting linac electron beam energy	13.6 GeV	15 GeV			
Electron bunch repetition rate	120 Hz	120 Hz			
Normal conducting linac charge per bunch	0.1 nC	0.25 nC			
Photon beam energy range	1–15 keV	1–25k eV			
Low repetition rate capable end stations	≥2	≥ 3			
FEL photon quantity (10 ⁻³ BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV			

Performance Measure	Threshold	Objective			
Variable gap undulators	2 (soft and hard x-ray)	2 (soft and hard x-ray)			
Superconducting linac-based FEL system					
Superconducting linac electron beam energy	3.5 GeV	≥ 4 GeV			
Electron bunch repetition rate	93 kHz	929 kHz			
Superconducting linac charge per bunch	0.02 nC	0.1 nC			
Photon beam energy range	250–3,800 eV	0–5,000 eV			
High repetition rate capable end stations	≥ 1	evea ≥2			
FEL photon quantity (10 ⁻³ BW) per bunch	5x10 ⁸ (10x spontaneous) @2,50 Achi	> 10 ¹¹ @ 3,800 eV			
Normal conducting linac-based syst					
Normal conducting linac electron beam energy	13.6 GeV	15 GeV			
Electron bunch repetition rate	120 Hz	120 Hz			
Normal conducting linac charge per bunch	0.1 nC	0.25 nC			
Photon beam energy range	1–15 keV	1–25k eV			
Low repetition rate capable end stations	≥ 2	≥ 3			
FEL photon quantity (10 ⁻³ BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV			

Performance Measure	Threshold	Objective				
Variable gap undulators	2 (soft and hard x ray)	2 (soft and hard x ray)				
Superconducting linac-based FEL system						
Superconducting linac electron beam energy	3.5 GeV	≥ 4 GeV				
Electron bunch repetition rate	93 kHz	929 kHz				
Superconducting linac charge per bunch	0.02 nC	0.1 nC				
Photon beam energy range	250-3,800 eV	200–5,000 ev				
High repetition rate capable end stations	≥ 1	≥ 2				
FEL photon quantity (10 ⁻³ BW) per bunch	5x10 ⁸ (10x spontaneous) @2,500 eV	> 10 ¹¹ @ 3,800 eV				
Normal conducting linac-based system						
Normal conducting linac electron beam energy	13.6 GeV	15 GeV				
Electron bunch repetition rate	120 Hz	120 Hz				
Normal conducting linac charge per bunch	0.1 nC	0.25 nC				
Photon beam energy range	1–15 keV	1–25k eV				
Low repetition rate capable end stations	≥ 2	≥ 3				
FEL photon quantity (10 ⁻³ BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV				

Performan	ice Measure	Threshold	Objective			
Variable ga	p undulators	2 (soft and hard x ray)	2 (soft and hard x ray)			
Superconducting linac-based FEL system						
Superconducting linac e	electron beam energy	3.5 GeV	≥ 4 GeV			
Electron bunch repetition rate		93 kHz	929 kHz			
Superconducting linac of	harge per bunch	0.02 nC	0.1 nC			
Photon beam energy rang	e	250–3,800 eV	200–5,000 ev			
High repetition rate capab	le end stations	≥ 1	≥ 2			
FEL photon quantity (10-3	PM/) por bupph	10x anonton cours) $@2.500$ s)/	> 10 ¹¹ @ 3,800 eV			
	Parameter	LCLS-II				
Normal conducting linac	# 1.3 GHz CMs	35	15 GeV			
Electron bunch repetitio	Operating Gradient	16 MV/m	120 Hz			
Normal conducting linac	linac Required O. at Operating Gradient 2.7×10^{10}		0.25 nC			
Photon beam energy range 1–15 KeV		1–15 KeV	1–25k eV			
Low repetition rate capabl	e end stations	≥ 2	≥ 3			
FEL photon quantity (10 ⁻³	BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV			

Performance I	Measure	Threshold	Objective			
Variable gap un	dulators	2 (soft and hard x ray)	2 (soft and hard x ray)			
Superconducting linac-based FEL system						
Superconducting linac elect	ron beam energy	3.5 GeV	≥ 4 GeV			
Electron bunch repetition rat	te	93 kHz	929 kHz			
Superconducting linac charg	ge per bunch	0.02 nC	0.1 nC			
Photon beam energy range		250-3,800 ev	200–5,000 ev			
High repetition rate capable en	nd stations	≥ 1	≥ 2			
FEL photon quantity (10-3 PM/)	por bunch 5v1	(10) (200 c) ((10)	> 10 ¹¹ @ 3,800 eV			
	Parameter	LCLS-II				
Normal conducting linac	# 1.3 GHz CMs	35	15 GeV			
Electron bunch repetitio	Operating Gradient	16 MV/m	120 Hz			
Normal conducting lina Required Q. at Operating Gradient 2 7x10 ¹⁰		0.25 nC				
Photon beam energy range			1–25k eV			
Low repetition rate capable en	d stations	≥ 2	≥ 3			
FEL photon quantity (10 ⁻³ BW ^a) per bunch	10 ¹⁰ (lasing @ 15 keV)	> 10 ¹² @ 15 keV			

Average Q₀ vs E Performance

- LCLS-II constructed 373 nitrogendoped 1.3 GHz cavities
- All cavities were produced with the **2/6 nitrogen-doping** protocol
- Significant procedural improvements were made along the way to achieve reliable good performance

- LCLS-II constructed 373 nitrogendoped 1.3 GHz cavities
- All cavities were produced with the **2/6 nitrogen-doping** protocol
- Significant procedural improvements were made along the way to achieve reliable good performance

- LCLS-II constructed 373 nitrogendoped 1.3 GHz cavities
- All cavities were produced with the **2/6 nitrogen-doping** protocol
- Significant procedural improvements were made along the way to achieve reliable good performance

- LCLS-II constructed 373 nitrogendoped 1.3 GHz cavities
- All cavities were produced with the **2/6 nitrogen-doping** protocol
- Significant procedural improvements were made along the way to achieve reliable good performance

Installation & Cool Down

Cryomodule Installation

Last CM (spare) Delivered in May 2021

For more details see D. White MOPMB089

Cryomodule Installation

Last CM (spare) Delivered in May 2021

CM Installation Complete February 2021

D. Gonnella, LCLS-II Commissioning

For more details see D. White MOPMB089

 Cool down of the entire linac was completed in ~5 days!

For more details see MOPMB087

- Cool down of the entire linac was completed in ~5 days!
- A rate of 2-3 K/hour was maintained over that duration

For more details see MOPMB087

For more details see MOPMB087

- Cool down of the entire linac was completed in ~5 days!
- A rate of 2-3 K/hour was maintained over that duration
- Cool down was near-fully automated by the cryogenic controls system

For more details see MOPMB087

- Cool down of the entire linac was completed in ~5 days!
- A rate of 2-3 K/hour was maintained over that duration
- Cool down was near-fully automated by the cryogenic controls system
 - CD valves were used to maintain rate and safe temperature gradients across the linac

For more details see MOPMB087

 Cool down of the entire linac was completed in ~5 days!

- A rate of 2-3 K/hour was maintained over that duration
- Cool down was **near-fully automated** by the cryogenic controls system
 - CD valves were used to maintain rate and safe temperature gradients across the linac
- After multiple attempts, stable operation at 2 K was achieved only 11 days later 12

Fast Cool Down

- Fast cool down of the cavities is critical to achieve High-Q₀
- This is especially challenging in the installed linac where CMs cannot be cooled/warmed independently
- Special tools were developed to automate this process to make it robust and repeatable

Fast Cool Down

Time Since Start: 0.00 hours

Coloring based on *actual* temperature data during FCD

- What we really care about is the **cool down** *gradient* not the *rate* faster usually means larger gradients
- Two installed CMs have temperature sensors located on the cavity cells
- Gradients from the SLAC fast cool down and testing at FNAL could be compared to gauge how "successful" we were

- What we really care about is the **cool down** *gradient* not the *rate* faster usually means larger gradients
- Two installed CMs have temperature sensors located on the cavity cells
- Gradients from the SLAC fast cool down and testing at FNAL could be compared to gauge how "successful" we were
- Non-optimized cool down results in lower ΔT than achieved at the test stands

- What we really care about is the **cool down** *gradient* not the *rate* faster usually means larger gradients
- Two installed CMs have temperature sensors located on the cavity cells
- Gradients from the SLAC fast cool down and testing at FNAL could be compared to gauge how "successful" we were
- Non-optimized cool down results in lower ∆T than achieved at the test stands
- Fast cool down process produces similar gradients to FNAL CMTF

Sufficient cool downs for High Q₀ achieved at SLAC

- What we really care about is the **cool down** *gradient* not the *rate* faster usually means larger gradients
- Two installed CMs have temperature sensors located on the cavity cells
- Gradients from the SLAC fast cool down and testing at FNAL could be compared to gauge how "successful" we were
- Non-optimized cool down results in lower ∆T than achieved at the test stands
- Fast cool down process produces similar gradients to FNAL CMTF
- We are now able to routinely achieve similar temperature gradients across the cavities to what was achieved during CM testing

Sufficient cool downs for High Q₀ achieved at SLAC

3

Cavity Commissioning Results

Cavity Commissioning Process

Each individual cavity went through an identical checkout process:

1. Checkout of support systems (SSAs, LLRF, etc.)

Cavity Commissioning Process

Each individual cavity went through an identical checkout process:

- 1. Checkout of support systems (SSAs, LLRF, etc.)
- 2. Checkout of auxiliary components (tuner, piezos, coupler, etc.)

Cavity Commissioning Process

Each individual cavity went through an identical checkout process:

- 1. Checkout of support systems (SSAs, LLRF, etc.)
- 2. Checkout of auxiliary components (tuner, piezos, coupler, etc.)
- 3. Gradient and field emission characterization

Placement of radiation sensors is similar but *not identical* to placement during CM acceptance testing

Cavity Commissioning Process

Each individual cavity went through an identical checkout process:

- 1. Checkout of support systems (SSAs, LLRF, etc.)
- 2. Checkout of auxiliary components (tuner, piezos, coupler, etc.)
- 3. Gradient and field emission characterization
- 4. Individual and full CM stability demonstration
 - 1 hour run for single cavities to define usable gradient
 - 12 hour full CM test

Placement of radiation sensors is similar but *not identical* to placement during CM acceptance testing

Overall SRF Commissioning Status

- Cryomodule commissioning has been very successful
- 97% of installed cavities fully operational (planned 94%)
- Majority of testing included an admin limit of 18 MV/m

Overall SRF Commissioning Status

- Cryomodule commissioning has been very successful
- 97% of installed cavities fully operational (planned 94%)
- Majority of testing included an admin limit of 18 MV/m
- Total commissioned voltage
 exceeds design by >20%

Total Commissioned Cavity Voltage: 4.9 GV

Gradient Performance

- Comparison with Acceptance Test
- Gradient performance is in line with CM acceptance test measurements at FNAL and JLab

Admin limits:

- 18 MV/m in commissioning
- 21 MV/m in acceptance test

AC D. Gonnella, LCLS-II Commissioning

Gradient Performance

Comparison with Acceptance Test

Admin limits:

- 18 MV/m in commissioning
- 21 MV/m in acceptance test

- Gradient performance is in line with CM acceptance test measurements at FNAL and JLab
- No observable change in field emission onsets or magnitude from installation
 - Remarkable achievement by the SLAC installation team

- Multipacting identified as a gradient limitation for LCLS-II cavities late in CM production
- Observed as a short term stability at gradient in the band of 17-23 MV/m

- Multipacting identified as a gradient limitation for LCLS-II cavities late in CM production
- Observed as a short term stability at gradient in the ٠ band of 17-23 MV/m
- Processing techniques developed and tested by LCLS-II-HE team and applied to a subset of cavities in the installed linac
 - Consists of repeatedly quenching the cavity in CW mode with limited time (few seconds) for recovery

Repeated quenches

- Multipacting identified as a gradient limitation for LCLS-II cavities late in CM production
- Observed as a short term stability at gradient in the band of 17-23 MV/m
- Processing techniques developed and tested by LCLS-II-HE team and applied to a subset of cavities in the installed linac
 - Consists of repeatedly quenching the cavity in CW mode with limited time (few seconds) for recovery
- Multipacting has not returned after >3 months effects of processing persist through thermal cycles

- Multipacting identified as a gradient limitation for LCLS-II cavities late in CM production
- Observed as a short term stability at gradient in the band of 17-23 MV/m
- Processing techniques developed and tested by LCLS-II-HE team and applied to a subset of cavities in the installed linac
 - Consists of repeatedly quenching the cavity in CW mode with limited time (few seconds) for recovery
- Multipacting has not returned after >3 months effects of processing persist through thermal cycles

Average gradient gain of ~3 MV/m observed in 37 cavities processed

For more details see A. Cravatta MOPMB063

Cavity Limitations

- 80% of cavities reach ≥16 MV/m

- The majority of cavities were limited by quench below • the admin limit of 18 MV/m
 - It is suspected that many of these are limited by ٠ multipacting which could be processed
- About one-quarter of the cavities reached the admin • limit
- About one-fifth of the cavities were limited by field emission

Cavity Limitations

- The majority of cavities were limited by quench below ٠ the admin limit of 18 MV/m
 - It is suspected that many of these are limited by multipacting which could be processed
- About one-quarter of the cavities reached the admin ۲ limit
- About one-fifth of the cavities were limited by field emission
- The remaining 2% of cavities are unable to be used:
 - 2 cavities: poor contact between coupler warm and ٠ cold ends
 - 4 cavities: tuners not functioning properly ٠
 - It is expected that all 6 of these cavities could be ٠ repaired in situ at room temperature 20

• Due to the strong coupling in the CM, Q_0 is measured cryogenically

The Q₀ that was promised...

- Due to the strong coupling in the CM, Q₀ is measured cryogenically
- Full CM average Q₀ results look promising
- Across the linac an average of 2.8x10¹⁰ has been observed, exceeding the spec of 2.7x10¹⁰

The Q₀ that was promised...

- Due to the strong coupling in the CM, Q₀ is measured cryogenically
- Full CM average Q₀ results look promising
- Across the linac an average of 2.8x10¹⁰ has been observed, exceeding the spec of 2.7x10¹⁰
- Low performers can likely be improved by additional CM degaussing

The Q₀ that was promised...

- Due to the strong coupling in the CM, Q₀ is measured cryogenically
- Full CM average Q₀ results look promising
- Across the linac an average of 2.8x10¹⁰ has been observed, exceeding the spec of 2.7x10¹⁰
- Low performers can likely be improved by additional CM degaussing

Demonstrates High Q₀ in an installed linac for the first time

Effect of Degauss on Q₀

• The two worse cavities in terms of Q₀ were degaussed during the recent room temperature warm up

Cryomodule	Q ₀ Before Degauss	Q ₀ After Degauss	P _{diss} Savings at 16 MV/m
CM18	1.3x10 ¹⁰		
CM27*	1.0×10^{10}		

*CM27 was made of 100% TD/800 cavities with bad flux expulsion characteristics

Effect of Degauss on Q₀

- The two worse cavities in terms of Q_0 were degaussed during the recent room temperature warm up
- Significant improvement in Q₀ was observed compared to before degaussing

Cryomodule	Q ₀ Before Degauss	Q ₀ After Degauss	P _{diss} Savings at 16 MV/m
CM18	1.3x10 ¹⁰	3.4x10 ¹⁰	104 W
CM27*	1.0x10 ¹⁰	2.6x10 ¹⁰	134 W

Nominal heat load for 1 CM: 80 W

Effect of Degauss on Q₀

- The two worse cavities in terms of Q_0 were degaussed during the recent room temperature warm up
- Significant improvement in Q₀ was observed compared to before degaussing
- We have now degaussed 4 CMs, with an average Q₀ of 3.1x10¹⁰ compared to 2.7x10¹⁰ for those not degaussed
- For HE, degaussing of all CMs, including already installed LCLS-II CMs NEEDS to be included in the plan

Cryomodule	Q ₀ Before Degauss	Q₀ After Degauss	P _{diss} Savings at 16 MV/m
CM18	1.3x10 ¹⁰	3.4x10 ¹⁰	104 W
CM27*	1.0x10 ¹⁰	2.6x10 ¹⁰	134 W

Nominal heat load for 1 CM:

80 W

*CM27 was made of 100% TD/800 cavities with bad flux expulsion characteristics

Microphonics Performance

Peak Detuning Over 3 Hours

- Overall, microphonics performance in the linac has been excellent
- 94% of cavities show peak detuning below the 10 Hz specification
- Only 2 cavities currently have gradients limited by microphonics
- Primary source of gradient-limiting microphonics is leaky cool down valves

4

SC Linac & Beam Commissioning

Dimension	Emittance (µm)	
$\gamma \epsilon_x$	0.58 ± 0.02	
$\gamma \epsilon_y$	0.56 ± 0.02	

Excellent Injector Emittance Achieved

 Stable 3 GeV beam to BSY achieved on 10/28

Total Cavity Voltage

- Stable 3 GeV beam to BSY achieved on 10/28
- 2. Stable 3.5 GeV beam (on crest) to BSY achieved on 11/8
 - Ran stably through end of November

- Stable 3 GeV beam to BSY achieved on 10/28
- 2. Stable 3.5 GeV beam (on crest) to BSY achieved on 11/8
 - Ran stably through end of November
- **3**. 3.5 GeV beam with L1 and L2 at nominal phase (off crest) at end of November

Total Cavity Voltage

- Stable 3 GeV beam to BSY achieved on 10/28
- 2. Stable 3.5 GeV beam (on crest) to BSY achieved on 11/8
 - Ran stably through end of November
- **3**. 3.5 GeV beam with L1 and L2 at nominal phase (off crest) at end of November
- 4. Lowered to 3 GeV for remaining beam tasks until December break

Total Cavity Voltage Total Linac Voltage (GV) May 29 May 15 Jun 12 Nov 16 Nov 23 Nov 02 Nov 09 Nov 30 2023 2022

- Stable 3 GeV beam to BSY achieved on 10/28
- 2. Stable 3.5 GeV beam (on crest) to BSY achieved on 11/8
 - Ran stably through end of November
- **3**. 3.5 GeV beam with L1 and L2 at nominal phase (off crest) at end of November
- 4. Lowered to 3 GeV for remaining beam tasks until December break
- 5. Following restart in May 2023, 3.5 GeV beam has been used exclusively

Total Cavity Voltage

93 kHz Operation

- Repetition rate was ramped up to 93 kHz on 6/7 for the first time
- Subsequent measurements were carried out at half the rate but at same beam power for additional testing
- This was the last KPP for the linac

Spacing of ~10.7 μs between pulses demonstrates 93 kHZ

5

Summary & Outlook

SC Linac Commissioning Accomplishments & Remaining Tasks

Linac Commissioning

SC Linac Commissioning Accomplishments & Remaining Tasks

Linac Commissioning

 Established the first-time beam through the three main SC linac sections (L1B, L2B, and L3B) in October 2022

SC Linac Commissioning Accomplishments & Remaining Tasks

Linac Commissioning

- Established the first-time beam through the three main SC linac sections (L1B, L2B, and L3B) in October 2022
- 3.5 GeV beam transported to BSY dump in November 2022

Linac Commissioning

- Established the first-time beam through the three main SC linac sections (L1B, L2B, and L3B) in October 2022
- 3.5 GeV beam transported to BSY dump in November 2022
- Record injector performance has been demonstrated

Linac Commissioning

- Established the first-time beam through the three main SC linac sections (L1B, L2B, and L3B) in October 2022
- 3.5 GeV beam transported to BSY dump in November 2022
- Record injector performance has been demonstrated
- Demonstration of repetition rate of 93 kHz in June 2023

Current beam

Linac Commissioning

- Established the first-time beam through the three main \checkmark SC linac sections (L1B, L2B, and L3B) in October 2022
- **3.5 GeV beam** transported to BSY dump in November \checkmark 2022
- **Record injector performance** has been demonstrated \checkmark

Photon Commissioning

- **1**. Beam transport to undulator halls
- 2. First photons

Linac Commissioning

- Established the first-time beam through the three main SC linac sections (L1B, L2B, and L3B) in October 2022
- 3.5 GeV beam transported to BSY dump in November 2022
- Record injector performance has been demonstrated
- Demonstration of repetition rate of 93 kHz in June 2023

Photon Commissioning

- **1**. Beam transport to undulator halls
- 2. First photons

Estimate to complete August 2023

Current beam

commissioning progress

Summary

- Commissioning of the LCLS-II linac has progressed very well
- Cavity performance has been excellent with NO DEGRADATION FROM
 INSTALLATION
- Average Q₀ exceeds the LCLS-II specification and demonstrates high-Q₀ in an installed linac for the first time
- All linac commissioning milestones have been met, estimate to reach first light by the end of the summer

Summary

- Commissioning of the LCLS-II linac has progressed very well
- Cavity performance has been excellent with NO DEGRADATION FROM
 INSTALLATION
- Average Q₀ exceeds the LCLS-II specification and demonstrates high-Q₀ in an installed linac for the first time
- All linac commissioning milestones have been met, estimate to reach first light by the end of the summer
- This is only the beginning...

The Future of SRF at SLAC

Special thanks to the entire LCLS-II collaboration for all their hard work to make this possible!

Thanks for your attention!

SLAC NATION ACCELE LABORA

‡ Fermilab

