

PIP-II Overview and Status

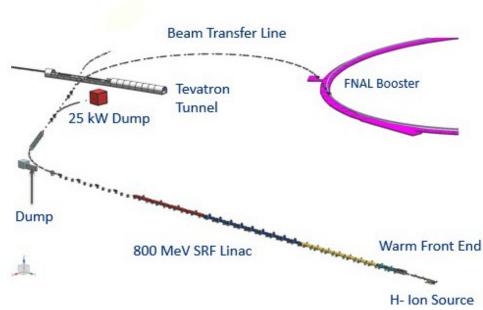
Rich Stanek, Project Director for the PIP-II Team SRF 2023 MOIXA02 PIP-II is a partnership of:

Outline

- PIP-II Mission & Scope
- International Partners
- Design and Quality Control
- Challenges
- Project Status
- ASPIRE Program
- Summary

PIP-II Mission

PIP-II is an essential upgrade to Fermilab accelerator complex to enable the world's most intense beam of neutrinos to LBNF/DUNE, and a broad physics research program for decades to come.


PIP-II Capabilities

Beam Power


- 1.2 MW proton beam
- Upgradeable to multi-MW
- Flexibility, multi-user capability
 - CW-compatible
 - Customized beams
 - Multi-user delivery

Reliability

 Modernizes Fermilab accel complex

The PIP-II scope enables the accelerator complex to reach 1.2 MW proton beam on LBNF target

Space reserved for two CMs for 1 GeV Upgrade

CD-4 Key Performance Parameters Unchanged Demonstrated at Project Completion

#	Scope Threshold KPPs		Objective KPPs		
1	Linac Beam Energy	Accelerate H- beam to 600 MeV	 Accelerate H- beam to 700 MeV Linac systems required to accelerate beam to 800 MeV installed and tested 		
2	Linac Beam Intensity	Beam delivered to Beam Dump at the end of Linac	Beam with intensity of 1.3E12 particles per pulse (H-) at 20 Hz delivered to Beam Line Dump		
3	Booster/ Recycler/ Main Injector upgrades	Booster, Recycler, and Main Injector Upgrades to support operations with beam power of 1.2 MW on the LBNF target are installed and tested without beam	Linac beam injected and circulated ir Booster		

Objective KPPs are aligned with the baseline project scope and assure that the accelerator facility as constructed is capable of meeting the scientific needs of the Fermilab program.

Beam Performance Goals and Partial Component List

Performance Parameter	Value	Units
Delivered Beam Energy	800	MeV
Beam Particles	H-	
Beam Pulse Length	0.54	ms
Particles per Pulse	6.7	1012
Pulse repetition Rate	20	Hz
Average Beam Current	2	mA
Maximum Bunch Intensity	1.9	108
Maximum Bunch Rep Rate	162.5	MHz
Bunch Pattern	Prog and Arbitrary	
RF Frequency	162.5 harmonic	
Bunch Length (RMS)	< 4	ps
Transverse Emittance	≤ 0.3	mm-rad
Longitudinal Emittance (RMS)	≤ 0.3	mm-rad

Component	Number Required
SSR1 cryomodules	2
SSR2 cryomodules	8
LB650 cryomodules	10
HB650 cryomodules	4
7 kW SSA	16
20 kW SSA	35
40 kW SSA	36
70 kW SSA	24
ORBUMP magnets	6
Gradient magnets	6
Painting magnets	10
Gamma-t Quad magnets	18
Superconducting solenoids	33
Beam Current Monitors	48
Beam Position Monitors	126
Beam Loss Monitors	235
Beam Profile Monitors	47

PIP-II will provide a highly capable, reliable, upgradeable and expandable scientific ^{06/26/2023} infrastructure with significant savings to DOE

PIP-II International Partners, Expertise and Capabilities

India, Department of Atomic Energy (DAE) (started 2009) BARC, RRCAT, VECC; and IUAC

Substantial engineering / manufacturing experience; Superconducting magnets for LHC; 2 GeV synch light source

Italy, INFN (started 2016)

Internationally recognized leader in superconducting RF technologies SRF cavity and cryomodule fabrication for XFEL; SRF cavities for ESS

UK, STFC UKRI (started 2017)

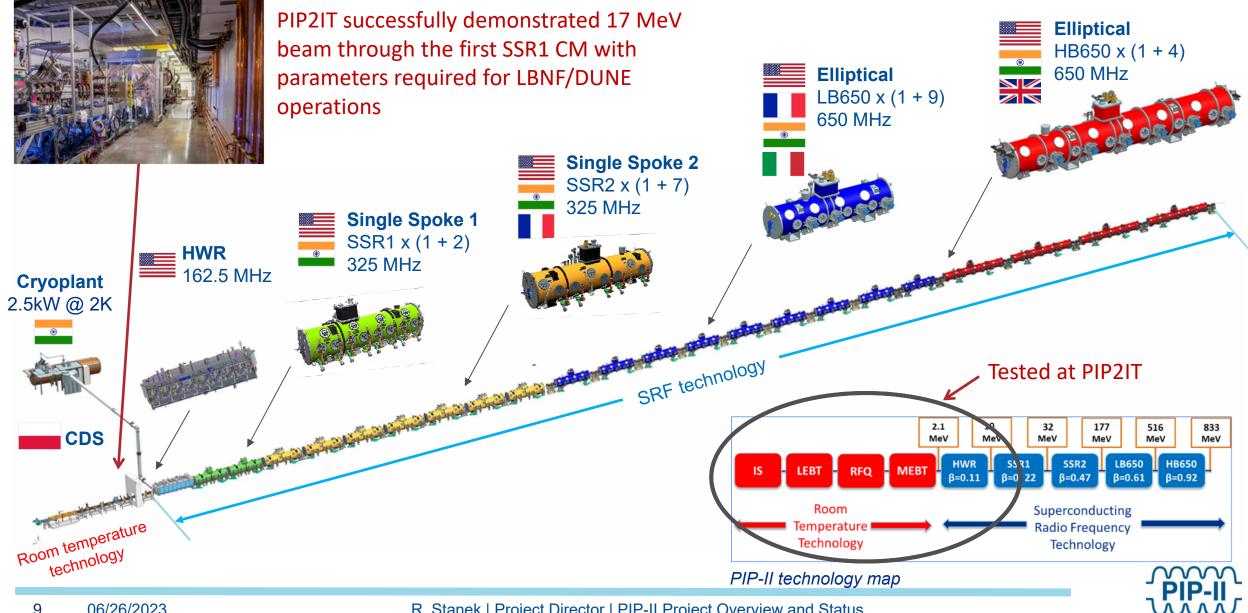
Substantial engineering and manufacturing experience; Construction, operation of synch light & neutron sources SRF cavity processing and testing for ESS

France, CEA, CNRS/IN2P3 (started 2017)

Internationally recognized leader in large-scale CM assembly CM assembly for European XFEL and ESS; SSR2 cavities and couplers for ESS

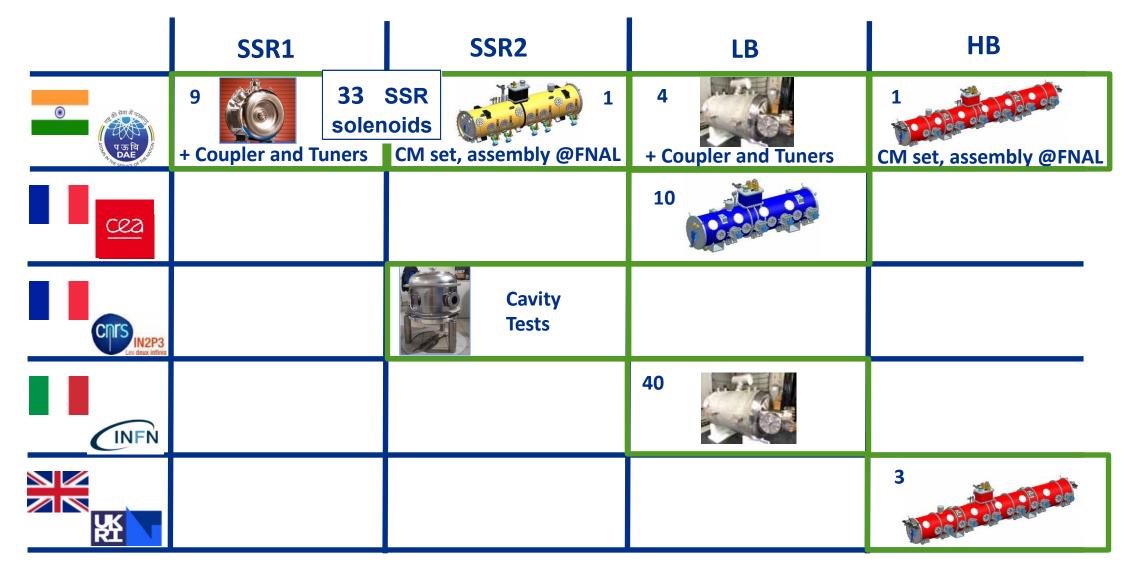
Poland, WUST, WUT, TUL (started 2018)

Substantial engineering / manufacturing experience; CDS, LLRF, QC for XFEL, ESS

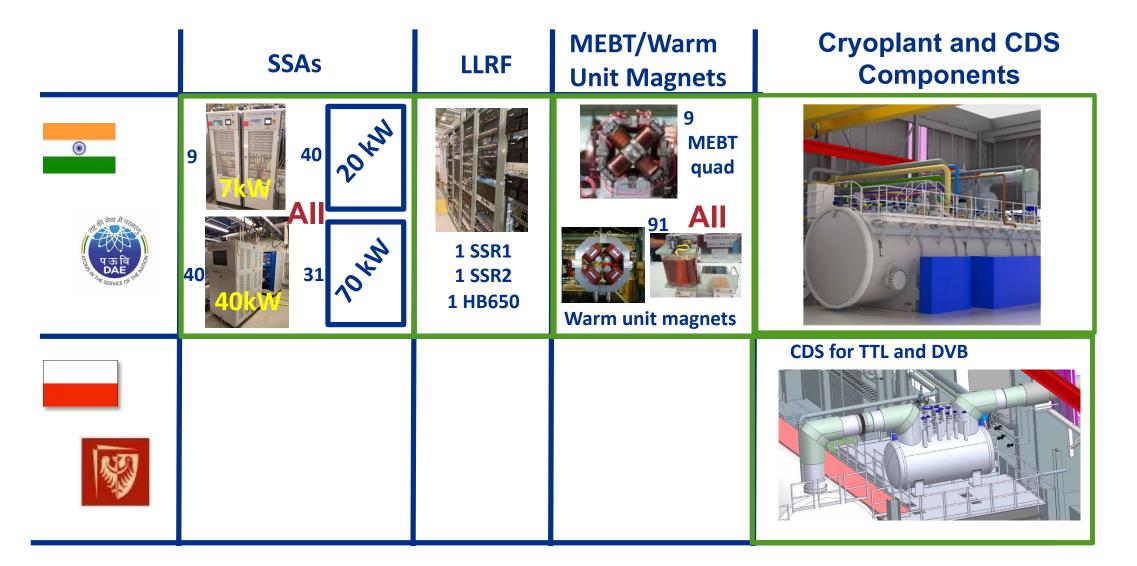


Other U.S. Institutions are Involved

- PIP-II Partnerships not limited to international institutions
 - Argonne National Lab (ANL) built the HWR
 - Low Level RF Collaboration
 - Lawrence Berkeley National Lab (LBNL)
 - Thomas Jefferson National Lab (JLab)
 - Stanford Linear Accelerator Center (SLAC)
- Large projects require collaborations rare to be able to do one on your own
 - Makes efficient use of government investments in SRF infrastructure
 - Improves ability to resolve issues (technical, schedule)

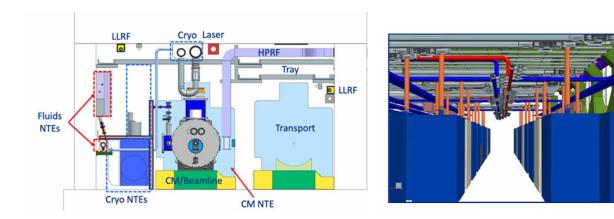


Linac Scope


R. Stanek | Project Director | PIP-II Project Overview and Status

Overview of Construction IKC for PIP-II – CryoModules (CM)

Overview of Construction IKC for PIP-II – other than CM


Partnerships

- Partnerships work when both sides get benefit from the collaboration
- To our Partners: PIP-II would not be successful without you!
- Partners, both international and at other national labs
 - Add another level of technical expertise and experience
 - Transparency and communication are the keys
 - Allow for parallel efforts while reducing infrastructure costs
- Not without possible drawbacks including some additional risks
 - Technical standards/codes may not be the same adding additional analysis/reviews
 - Quality Control systems probably not consistent adding extra work to map QC data
 - Number of funding sources increases adding more uncertainty in fund availability
 - Procurements can be handled differently at different institutions adding complexity

Design Control

- Designs are driven by Physics Requirements and Technical Requirements Specifications
- Changes are tracked from the Technical Baseline (per Configuration Management Plan)
- Design Change Board reviews requests (DCR) and approves changes
- Not-to-Exceed envelopes are used initially
 - Eventually actual designs are input to full linac 3D CAD model (Installation Coordinator)
- Per the Systems Engineering Management Plan
 - Level 2 Subsystem Manager is the "Design Authority"
 - Governing institution responsible for final design of component is "Designer of Record"

	Designer of Record	Production Entity	
Item	Institute(s)	Institute(s)	
CryoPlant			
CryoPlant	Commercial	DAE - BARC	
CDS			
Distribution Valve Box	WUST	WUST	
Tunnel Transfer Line Modules	WUST	WUST	
SSR1 CM1-2			
CM	FNAL	FNAL	
Jacketed Cavities	FNAL	DAE - BARC	
Couplers	FNAL	FNAL	
Tuners	FNAL	DAE - BARC	
SC Solenoids	DAE - BARC	DAE - BARC	
SSR2 CM1-7			
CM (including shipping)	FNAL & DAE - BARC	FNAL & DAE - BARC	
Jacketed Cavities	FNAL	DAE - BARC & IN2P3	
Couplers	FNAL	DAE - BARC & IN2P3	
Tuners	FNAL	DAE - BARC & IN2P3	
SC Solenoids	DAE - BARC	DAE - BARC	

	Designer of Record	Production Entity Institute(s)	
Item	Institute(s)		
LB650 CM1-9			
CM (including shipping)	FNAL & CEA	CEA	
Jacketed Cavities	FNAL	INFN & DAE - VECC	
Couplers	FNAL	DAE - BARC	
Tuners	FNAL	DAE - BARC	
HB650 CM1-6			
CM (including shipping)	FNAL & DAE - RRCAT	UKRI & DAE - RRCAT	
Jacketed Cavities	FNAL	UKRI & DAE - RRCAT	
Couplers	FNAL	UKRI & DAE - RRCAT	
Tuners	FNAL	UKRI & DAE - RRCAT	
HPRF			
325MHz-7kW SSAs (SSR1)	DAE - BARC	DAE - BARC	
325MHz-20kW SSAs (SSR2)	DAE - BARC	DAE - BARC	
650MHz-40kW SSAs (LB650)	DAE - RRCAT	DAE - RRCAT	
650MHz-70kW SSAs (HB650)	DAE - RRCAT	DAE - RRCAT	
MAGNETS			
PIP-II Magnets	DAE - BARC	DAE - BARC	
650 MHz Warm unit magnets [quads+ correctors]	DAE - BARC	DAE - BARC	

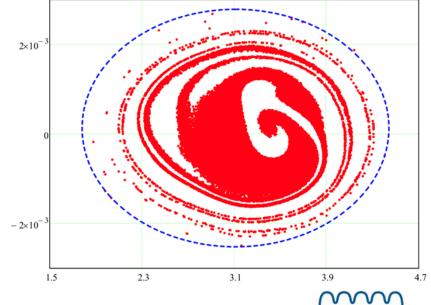
06/26/2023

R. Stanek | Project Director | PIP-II Project Overview and Status

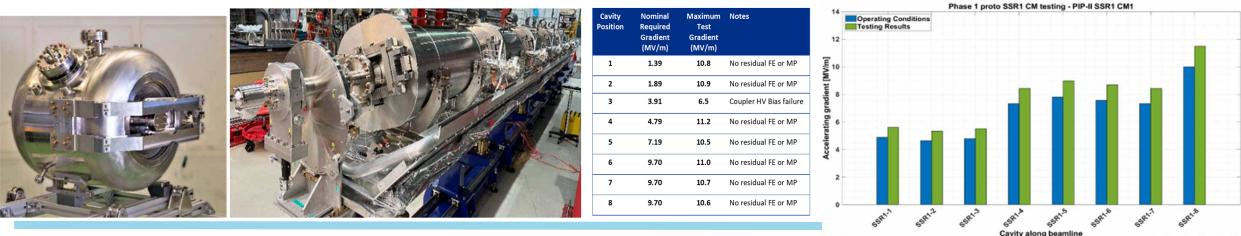
Quality Assurance and Control

- A Quality Control Coordination Group is established to bring Quality representatives from each Partner together in a forum.
 - This group discusses QA expectations and ensures alignment of QC activities for like contributions.
 - Meets quarterly with individual one on one meetings every month
- Quality Control (QC) Plans are identified and tracked via a QC Plan Tracking Tool and are developed in accordance with the Technical Review Plan.
- Travelers are developed across the Project to document results of QC checks
 - Currently focusing on traveler exchange process and Quality Control Alignment Matrix

PIP-II Challenges


- Injecting into an existing machine in the accelerator complex
 - Inject at 800 MeV instead of 400 MeV
 - Inject over 550 microsec instead of 33 microsec with limited injection length in the lattice
 - Operate Booster at 20 Hz instead of 15 Hz
- Variety of SRF cavity types adds complexity
 - Fabrication differences, processing recipe, mechanical stability...
 - CMs have many common features
 - Prototypes are necessary
- Switching to an EPICS-based control system for FNAL accelerator facility
 - Will run hybrid with remnants of ACNET still present
- Integration into overall Lab schedule (2-year shutdown)
 - PIP-II readiness affects entire FNAL program

Simulations of Beam Dynamics in Booster


- Booster 400 MeV optics scaled to 800 MeV with modifications for the PIP-II injection was used
- Realistic Linac beam distribution tracked from the RFQ
- Foil model integrated in simulations
- Booster Impedance simulated, measured, used for simulations
- Transition crossing simulated
- PIP-II mitigates intensity limits and losses in Booster:
 - Space charge tune-shift reduced by factor of 2 4 at 800 MeV injection
 - Transverse emittances meet requirements
 - Electron cloud simulated, small impact at PIP-II intensity
 - Beam losses at the 2% level with 2-stage collimation in BTL, and increased aperture extraction magnets

Simulated booster beam distribution at extraction. The blue line shows the 0.1 eV·s requirement.

PIP-II Status - SRF

- Three CMs have been fabricated and tested (HWR, SSR1 pCM and HB650 pCM)
 - HWR (after some minor rework) will be linac ready
 - SSR1 pCM linac ready as is
 - HB 650 pCM will need to have cavity string rebuilt before use in linac
- SSR2 cavities being processed issue with Field Emission/HPR
 - Procurement of components for SSR2 pCM completed, preparing facilities for the assembly
- Processing recipes for LB and HB 650 cavities are resolved (pending final testing)
- LB650 Nb awarded (INFN) cavity procurement documentation is ongoing
- HB650 Nb awarded (UKRI) cavity contract awarded (UKRI)
- Procurements for LB650 CMs (CEA/Saclay) and HB 650 CMs (UKRI) ongoing

06/26/2023

R. Stanek | Project Director | PIP-II Project Overview and Status

M

SRF Cavities

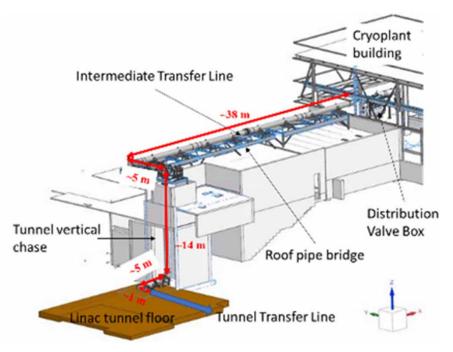
				_		
		Production	Pre-Production	Production	Production	
Name (Qty.)	HWR (8)	SSR1 (16)	SSR2 (35)	LB650 (36)	HB650 (24)	Units
Туре	Half-Wave	Single Spoke	Single Spoke	Elliptical	Elliptical	-
β	0.11	0.22	0.47	0.61	0.92	-
Frequency	162.5	325	325	650	650	MHz
Q ₀	$8.5 \cdot 10^{9}$	$8.2 \cdot 10^{9}$	$8.2 \cdot 10^{9}$	$2.4 \cdot 10^{10}$	$3.3\cdot10^{10}$	-
Gradient	9.7	10	11.5	16.8	18.7	MV/m
Doped	No	No	No	Mid-T bake	Yes	-

Prototypes validated

Ongoing activities

SRF Cryomodules

Prototype built Prototypes validated

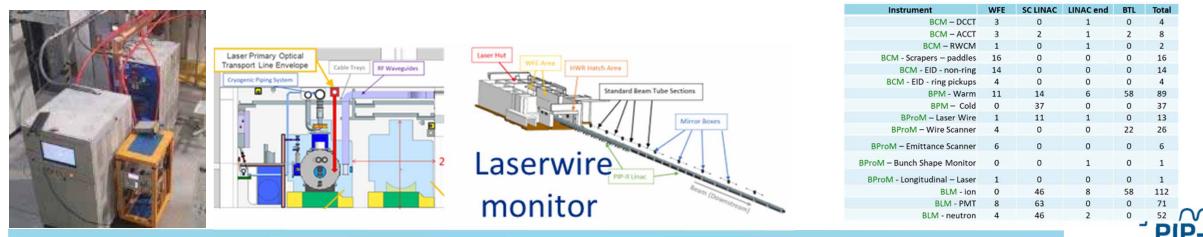

06/26/2023

R. Stanek | Project Director | PIP-II Project Overview and Status

PIP-II Status - Cryo

- Cryoplant is on order (BARC) and final design review is complete
 - Expected delivery ~Nov/Dec 2024
 - 2.5 kW @ 2K (50% margin to baseline heat load)
 - 1.5 kW @ 5K LTTS (120% margin to baseline heat load)
 - 10.7 kW @ 40K HTTS (70% margin to baseline heat load)
- Cryo Distribution System design complete ready for procurement

R. Stanek | Project Director | PIP-II Project Overview and Status


PIP-II Status - Civil Construction

- PIP-II Project requires cryoplant (2,300 m²) and front-end (1,400 m²) buildings, 275 m of linac tunnel, 28 MW electrical power, and 5,700 lpm of cooling water
- Status: completed Site Work, completed Cryoplant Building, and excellent progress on Linac Complex (front-end building and hall)
- 25-May: Serious construction accident has shut down the job (until further notice)

PIP-II Status for Other Systems

- Full front-end test complete: achieved 17 MeV with LBNF/Dune beam parameters
- Several Solid-State Amplifiers, 7kW (BARC) and 40kW (RRCAT) have been delivered and tested – DAE working on contracts for production units
- ~456 pieces of instrumentation in the machine
 - Laser Wire Profile Monitor (most challenging)
- EPICS control system being implemented on CM test stand
 - $-\mu$ TCA selected as electronics platform
- Contracts placed for key linac/accelerator components including:
 - 200 kW amplifier parts and vacuum tubes, Booster RF cavity, collimators, and magnet PS

Key PIP-II Dates

- CD-0 approved Jan 2016
- CD-1 approved Jul 2018
- CD-2/3 Early Conventional Facilities Subproject Jul 2020
- CD-2 Baseline Established Dec 2020
- CD-3a Long Lead Procurements Mar 2021
- CD-3 Start of Project Execution Apr 2022
- Early CD-4 Finish Apr 2029
- CD-4 Project Complete Dec 2032

Projected dates:

- Linac Tunnel Complete (ready for installation) Apr 2025
- Start of Cryoplant Commissioning Sep 2025
- Start of Beam Commissioning Dec 2028

ASPIRE Fellowship

<u>A</u>ccelerator

<u>S</u>cience

Program to

Increase

Representation in

Engineering

https://www.fnal.gov/pub/forphysicists/fellowships/aspire/

- ... is a Fermilab Fellowship for undergraduate and graduate
 (masters) students who are <u>underrepresented in STEM</u> disciplines,
 to develop the next generation of particle accelerator engineers.
- aims to further diversify PIP-II and Fermilab workforce and to meet the hiring needs in accelerator engineering disciplines.
-is a partnership between Fermilab and Midwest colleges and universities.

Program is transitioning to EDI Office sponsorship

Summary

- PIP-II Team is working very well together
 - Partners are engaged and committed to delivering their components
- PIP-II experienced unprecedented turnover in the management team but we have rebuilt and now have a strong, experienced team in place
- Technical progress at both Fermilab and Partners has been good
 - Contracts for key components are being executed and parts delivered
 - Moving closer to cryomodule production

Project execution is underway, our technical teams are talented and motivated to deliver the PIP-II Project

PIP-II

Follow us:

in

@PIP2accelerate

showcase/pip-u/

THEFT

111

A LAND

C.C.

The fit

一世

Alle pair

8

ALL ALL

y to

- in-

1

-

Institutions

- BARC Bhabha Atomic Research Centre
- CEA Commissariat à l'énergie atomique
- CNRS/IN2P3 Centre National de la Recherche Scientifique/Institut national de physique nucléaire et de physique des particules
- FNAL Fermi National Accelerator Laboratory
- INFN Istituto Nazionale di Fisica Nucleare
- IUAC Inter-University Accelerator Centre
- RRCAT Raja Ramanna Centre for Advanced Technology
- STFC UKRI Science & Technology Facilities Council UK Research and Innovation
- TUL Lodz University of Technology
- VECC Variable Energy Cyclotron Centre
- WUST Wroclaw University of Science and Technology
- WUT Warsaw University of Technology

