MATERIALS FOR SUPERCONDUCTING ACCELERATORS

BEYOND BULK Nb

A-M VALENTE-FELICIANO

Office of Science

Why looking beyond bulk Nb?

A. Grassellino and S. Aderhold, TTC meeting, Saclay, France (2016)

So far Q(H) and E_{acc} of Nb cavities have been rising ...

Fundamental limits of Q(H) and the breakdown field?

Decrease of Q(H) is consistent with current pairbreaking effects

How close is Nb to the fundamental instability of the Meissner state?

Breakdown fields close to the de-pairing limit of 50 MV/m for Nb have been achieved Best Nb cavities approaching their intrinsic limit at $H_{max} = H_{c}$

Why looking beyond bulk Nb?

A. Grassellino and S. Aderhold, TTC meeting, Saclay, France (2016)

So far Q(H) and E_{acc} of Nb cavities have been rising ...

Fundamental limits of Q(H) and the breakdown field?

Decrease of Q(H) is consistent with current pairbreaking effects

How close is Nb to the fundamental instability of the Meissner state?

Breakdown fields close to the de-pairing limit of 50 MV/m for Nb have been achieved Best Nb cavities approaching their intrinsic limit at H_{max} = H_c Recent improved cavity RF performance in Q with N doping/infusion

Why looking beyond bulk Nb?

A. Grassellino and S. Aderhold, TTC meeting, Saclay, France (2016)

016)

Breakdown fields close to the de-pairing limit of 50 MV/m for Nb have been achieved Best Nb cavities approaching their intrinsic limit at H_{max} = H_c Recent improved cavity RF performance in Q with N doping/infusion For further improvement, innovation needed

Possibilities to use higher performance superconductors other than bulk Nb?

RF SUPERCONDUCTOR: CHOICE CRITERIA ?

Office of Science

THOUSANDS OF SUPERCONDUCTORS ...

Thousands of SC exist, ~10 are currently used for applications, only bulk Nb works well for SRF !!!

IDEAL SRF MATERIAL: TAILORED FOR APPLICATIONS

High RRR not required for superconductivity but for thermal stabilization in case of defects

ULTIMATE LIMITS IN SRF

Niobium superconducting radiofrequency cavities

Performances

 $\mathsf{E}_{\mathsf{acc}}\,\alpha\,\mathsf{H}_{\mathsf{RF}}$

 $Q_0 (\alpha \ 1/R_S) \alpha T_C \implies Nb_3Sn, MgB_2, NbN... (but not YBCO)$ Limit = magnetic transition of the SC material @ H_{peak}

□ Superconductivity only needed inside :

Thickness ~10 µm

λ~ < 1 µm => thin films (onto a thermally conductive, mechanically resistant material, e.g. Cu)

Today :

Thin films exhibit too many defects

Only Bulk Nb has high SRF performances (high Q_0 and high E_{acc})

□ Issues : getting "defect free" superconductors

H_{Peak} H_{Max}.

H field mapping in an elliptical cavity

(Yes but not all defects are detrimental... See doping !)

HIGH Q₀, E_{ACC} IN SRF => MEISSNER STATE !

SC phase diagram

 $_{\odot}$ All SC applications except SRF: mixed state w. vortex

Vortices dissipate in RF !

o SRF => Meissner state mandatory !

Limit ?

- \circ H_{C1} = limit Meissner/mixed state
 - Nb: highest H_{C1} (180 mT)

Or

H_{SH} "Superheating field": Metastable state favored by H // to surface
 Difficult to get in real life !

Surface resistance:

$$R_{S} = R_{BCS}(T) + R_{re}$$

$$R_{BCS} = A(\lambda_L^4, \xi_F, \ell, \sqrt{\rho_n}) \frac{\omega^2}{T} e^{-\Delta/kT}$$

Not one formula predicting R_{res} , at least $\propto \sqrt{\rho_n}$ Variety of phenomena involved *Intrinsic:* Inhomogeneties, Metallic Inclusions within I, GB, Oxides *Extrinsic:* Trapped Flux during cooling (can be avoided)

н

H_{C2}

H_c

H_{C1}

High T_c is better $T << T_C$ is better ($e^{-\Delta/kT}$) Metallic character in NC state is better (ρ_n)

Dirty is better than high RRR ()? (e,g, doping, but more complex than that !)

SRf Tutorials 2023 - Beyond Bulk Nb

Mixed state w.Vortex (i.e. N. cond. flux line + screening currents)

VORTEX PENETRATION WITH B //

Surface barrier

(Bean & Livingston, 1964)

- Boundary condition. $(J_{\perp} = 0) \equiv$ "image" vortices
 - o Supercurrent tends to push Vx inside
 - o Image antivortex tends to pull it out
- Before entering the material Vx have to cross a surface barrier:
 - Vx thermodynamic Potential :

- "Ideal surface"
 - Barrier disappears only at H_{SH}~H_C>H_{C1}
 - Rationale used to predict SRF limits
 - If \exists localized defect w.: $H_C^{local} \ll H_c^{bulk}$ (or $T_c^{local} \ll T_c^{bulk}$) => early penetration of 1 or several Vx there

VORTEX PENETRATION WITH B //

Surface barrier

(Bean & Livingston, 1964)

- Boundary condition. $(J_{\perp} = 0) \equiv$ "image" vortices
 - o Supercurrent tends to push Vx inside
 - o Image antivortex tends to pull it out
- Before entering the material Vx have to cross a surface barrier:
 - Vx thermodynamic Potential :

- "Ideal surface"
 - Barrier disappears only at H_{SH}~H_C>H_{C1}
 - Rationale used to predict SRF limits
 - If \exists localized defect w.: $H_C^{local} \ll H_c^{bulk}$ (or $T_c^{local} \ll T_c^{bulk}$) => early penetration of 1 or several Vx there

VORTEX PENETRATION WITH B //

Surface barrier

(Bean & Livingston, 1964)

- □ Boundary condition. $(J_{\perp} = 0) \equiv$ "image" vortices
 - o Supercurrent tends to push Vx inside
 - o Image antivortex tends to pull it out
- Before entering the material Vx have to cross a surface barrier:
 - Vx thermodynamic Potential :

SUPERCONDUCTORS FOR SRF ?

Material	T _c (K)	ρ _n (μOcm)	µ₀H _{C1} (mT)*	µ₀H _{C2} (mT)*	µ₀H _c (mT)*	μ ₀ Η _{SH} (mT)*	11 (nm)*	(nm)*	∆ (meV)	Туре
Pb	7.1		n.a.	n.a.	80		48			I
Nb	9.23	2	170	400	200	219	40	28	1.5	II
NbN	17.1	70	20	15 000	230	214	200-350	<5	2.6	II
NbTi			4-13	>11 000	100-200	80-160	210-420	5.4		
NbTiN	17.3	35	30	15 000			150-200	<5	2.8	II
Nb₃Sn	18.3	20	50	30 000	540	425	80-100	<5	<5	П
Mo ₃ Re	15	10-30	30	3 500	430	170	140			II
MgB ₂	39	0.1-10	30	3 500	430	170	140	5	2.3/7.2	II- 2gaps**
2H-NbSe ₂	7.1	68	13	2680- 15000	120	95	100-160	8-10		II- 2gaps**
YBCO/Cuprates	93		10	100 000	1400	1050	150	0.03/2		d-wave**
Pnictides Ba _{0.6} K _{0.4} Fe ₂ As ₂	38		30	>50000	900	756	200	2	10-20	s/d wave**

* @ 0K ** 2D => orientation problems ?

WHAT IS THE ACTUAL LIMIT $(H_{fp}/H_{C1}/H_{SH})$?

Avalanche penetration/flux jumps

 $\overrightarrow{H_{appl}}$ $\bigotimes \begin{array}{c} 0.2 \text{ mm} \\ 1 \text{ ns} \end{array} 5 \text{ ns} \end{array} 22 \text{ ns} 52 \text{ ns} \end{array} = 52 \text{ ns} 66 \text{ ns}$

- □ ~100 µm in 1 ns (~*RF period*)
- **Compare with** λ *field penetration depth)*
 - o Nb : ~ 40 nm
 - o MgB₂ ~ 200 nm
- Avalanche : high RF dissipation

MgB_{2:} http://www.nature.com/srep/2012/121126/srep00886/full/srep00886.html?message-global=remove&WT.ec_id=SREP-20121127

□ In real world, cavities behavior is dominated by a few number of defects

It is very important to measure the penetration field of samples in realistic conditions

EFFECTS OF LOCAL DEFECTS

Vortices enter more easily at lower temperature (counter intuitive !)?

@ $T \sim T_C$: H is low => low dissipations => easy to thermally stabilize

@ T<<T_C : H is high=> even if
 small defect => high dissipations
 => Favors flux jumps

=> We have to reduce defect density

(yes but which ones?)

CHALLENGES TO FACE ON THE ROUTE TOWARDS OTHER SUPERCONDUCTORS: GENERALITIES

Office of Science

GENERAL ISSUES WITH SCs

Needed: high T_c , high H_{SH} (by default high H_{c1})

Advantages of niobium: pure metal.

- Highest $T_{\rm C}$ of metallic SC, $H_{\rm C1}$ 0
- Easy to form 0
- Uniform composition, no phase transition in the domain of interest 0
- Very large ξ: makes it less sensitive to small crystalline defects (e.g. GB) 0

Metalluroy - 52000 Issues with alloyed, metallic SC compounds (e.g. NbTi)

- Higher T_c s, but smaller H_{c1} , ξ 0
- Still relatively easy to form (harder) 0
- Usually several phases, not all of them SC
- Risk of non homogeneity Ο

Issues with non metallic SC compounds

- Higher T_{cs} , but smaller H_{c1} , ξ 0
- Brittle, no forming is possible, only films (OK for SRF, but a more complex 0 fabrication route is needed)
- Usually several phases, not all of them SC
- Risk of non homogeneity 0

Sometimes local disorder =>

 → Iocal composition, possibly non SC

 Weak links e.g. NC grain boundaries
 main reason why HTC do not apply in SRF.

EX. : Grain boundaries

Some nm

Top view of a (410) YBCO grain boundary calculated with molecular dynamics. http://www.phys.ufl.edu/~pjh/grain-boundry.html

►Compare with ξ

to Brillouin structure

If you are a theoretician you prefer to talk

about the "existence of nodes in the gap of

d-wave superconductors ": both are related

techno.

20075201

Nb : $\lambda \sim 50$ nm => only a few 100s nm of SC necessary (the remaining thickness= mechanical support) => Make thin films !

Advantages

- Thermal stability (*substrate cavity = copper, Aluminum, ... W*)
- o Cost
- Opens route to innovative materials
- Optimization of R_{BCS} possible (e.g. by playing with m.f.p)

Disadvantages

- Fabrication and surface preparation of substrate (at least) as difficult as for bulk Nb
- Steep Q₀ decrease often observed by increase of RF field (*sputtered niobium films, improved lately*)
- Deposition of innovative materials is very difficult (large parameters space to be explored)
- Most of the known SC have been optimized for wire applications (low H_{C1}, defects, pinning

centers...) => most of the literature recipes are not fitted for SRF application $\otimes \otimes \otimes$

DEPOSITION TECHNIQUES: 3 MAJORS FAMILIES

Physical deposition techniques (PVD, MS, DS...)

- o line of sight techniques
- issues: getting uniform thickness/structure internal stress and adhesion
- o limited for complex geometry

Thermal diffusion films

- o limited compositions available
- non uniform composition issues (S shaped diffusion front, differential diffusion rate with substrate grain orientation)

Chemical techniques CVD, ALD

- o conformational even in complex shape
- o very quick for large surfaces
- o issues: get the proper crystalline structure
- Required use of precursors introduces more impurities

Thin Films Growth

nucleation and growth Heterogeneous nucleation nucleation & island growth (a) coalescence island coalescence (b) continuous film thickening (subsequent growth). low T_{dep} high T_{dep} $\Delta G = a_3 r^3 \Delta G_v + a_1 r^2 \gamma_{vf} + a_2 r^2 \gamma_{fs} - a_2 r^2 \gamma_{sv}$ AN AN anneal $a_1 = 2\pi [1 - \cos(\theta)]$ Volume Cap surface Projected $a_2 = \pi \sin^2 \theta$ of cap area Surface area [C. Thompson] $a_3 = \pi [2 - 3\cos(\theta) - \cos^3(\theta)]$ Type 2 e.g. Ag, Al, Au, Cu Type 1 e.g. Ta, W, Cr, Fe, Si .. (d) (c)

Thin Films Growth

Control over the deposition process is exercised by only

3 first-order vapor parameters & 1 first-order substrate parameter

Vapor parameters	Absolute arrival rates of film atoms				
	Partial pressures of background gases in the chamber				
	Energies of the deposition fluxes.				
Substrate parameter	Substrate temperature T .				

Without energetic atoms, only the substrate temperature influences the processes of physi- and chemisorption, thermal desorption, nucleation, nuclei dissociation, surface diffusion, and formation of specific nucleation sites.

SEARCH FOR BETTER STRUCTURE - Energetic Condensation

Condensing (film-forming) species : hyper-thermal & low energies (>10 eV).

Office of Science

SPUTTERED Nb FILMS

Thickness of interest for SRF applications = RF penetration depth, i.e. the very top 40 nm of the Nb surface.

•CERN HIE- ISOLDE 52 x 160 MHZ Nb/Cu QWR

•CERN LEP 2272 x 353MHz Nb/Cu 4-cell cavities•LHC16 x 400 MHz Nb/Cu 1-cell cavities•INFN Legnaro52 x 160 MHZ Nb/Cu QWR

1.5 GHz Nb/Cu cavities, sputtered w/ Kr @ 1.7 K (Q_0 =295/ R_s)

Possible origin of the slope

Depinning of trapped flux

Low H_{C1}

Early vortex penetration due to roughness Current concentration due to porosities (generating local electrical field)

Bulk-like performance Nb film

Minimize Rres, maximize Q
Potential major system simplifications
Highest level of quality assurance and reliable performance.
Use of substrates with higher thermal conductivity (Cu, Al)

Bulk-like performance Nb film

Minimize Rres, maximize Q
Potential major system simplifications
Highest level of quality assurance and reliable performance.
Use of substrates with higher thermal conductivity (Cu, Al)

Bulk-like performance Nb film

Minimize Rres, maximize Q
 Potential major system simplifications
 Highest level of quality assurance and reliable performance.
 Use of substrates with higher thermal conductivity (Cu, Al)

Identify and correct the cause(s) of anomalous Q-slope

Bulk-like performance Nb film

Minimize Rres, maximize Q
 Potential major system simplifications
 Highest level of quality assurance and reliable performance.
 Use of substrates with higher thermal conductivity (Cu, Al)

Identify and correct the cause(s) of anomalous Q-slope

(not limited to Nb films alone, higher T_c films & multi layers also affected, especially with such issues as the entry of Josephson vortices driven by the RF field.) focused on the entire problem and all possible causes in order to understand, identify, and eliminate the causes.

Bulk-like performance Nb film

Minimize Rres, maximize Q
 Potential major system simplifications
 Highest level of quality assurance and reliable performance.
 Use of substrates with higher thermal conductivity (Cu, Al)

Identify and correct the cause(s) of anomalous Q-slope

(not limited to Nb films alone, higher T_c films & multi layers also affected, especially with such issues as the entry of Josephson vortices driven by the RF field.) focused on the entire problem and all possible causes in order to understand, identify, and eliminate the causes.

What are the differences between bulk and thin-film Nb in reference to the RF surface?

Bulk-like performance Nb film

Minimize Rres, maximize Q
 Potential major system simplifications
 Highest level of quality assurance and reliable performance.
 Use of substrates with higher thermal conductivity (Cu, Al)

Identify and correct the cause(s) of anomalous Q-slope

(not limited to Nb films alone, higher T_c films & multi layers also affected, especially with such issues as the entry of Josephson vortices driven by the RF field.) focused on the entire problem and all possible causes in order to understand, identify, and eliminate the causes.

What are the differences between bulk and thin-film Nb in reference to the RF surface?

Higher density of grain boundaries
Different spectrum of grain boundary energies than for bulk Nb surfaces
Thermal diffusivity of the RF surface (from the thermal properties of the film itself in addition to the thermal impedance of the Nb/ substrate interface).
Surface chemistry
Presence of defects (dislocations, porosities, inclusions)

Surface morphology.

Magnetic field losses- several sources: field enhancing surface features , external stray fields captured in form of vortices or arising from thermoelectric currents as Nb transitions from normal to superconducting state.

Crystallographic structure (orientation, grain size)

SRF Thin Films for Next-Generation Cavities

ALL film properties are a direct consequence of the film structure, defect/impurity content... thus the technique, environment, substrate are key factors

Protective Layer e.g. oxide layer = diffusion barrier, or low secondary emission layer (↓ MP) **"RF" layer** Optimized for superconductivity: Low surface resistance (medium m,f,p,) and/or High H_P (high H_{C1} high H_{SH}) "thermal conducting" layer Optimized for thermal transfer (high RRR, high m,f,p., not necessarily Nb)

> "External" layer Optimized for thermal transfer (low Kapitza resistance, e,g, anodization)

SRF Thin Films for Next-Generation Cavities

ALL film properties are a direct consequence of the film structure, defect/impurity content... thus the technique, environment, substrate are key factors

> Protective Layer e.g. oxide layer = diffusion barrier, or low secondary - emission layer (↓ MP)

"RF" layer

Optimized for superconductivity: Low surface resistance (medium m,f,p,) and/or High H_P (high H_{C1} high H_{SH})

"thermal conducting" layer Optimized for thermal transfer (high RRR, high m,f,p., not necessarily Nb)

"External" layer Optimized for thermal transfer (low Kapitza resistance, e,g, anodization)

EXAMPLE OF QUALITY ISSUES OF FILMS

Magn. Sput. Nb

Line of sight issuesporosities

[G. Rosaz]

s 45° 400 µm

Inverted pyramid crystalline growth

- Internal stress
 - Advantage: higher Tc (up to a certain impurity concentration)
 - Disadvantage: adhesion issues (peel-off, delamination)
- High impurities content
 - Nb = getter material (nearly as good as Ti => high interstitial content)
 - Carrier gas incorporation (Ar)

Sensitivity to Cu roughness (the smoother, the better)

[[]M. Ribeaudeau, PhD]

SUBSTRATE ISSUES

Cu and Nb not miscible (especially in presence of O)

Advantage: low interdiffusion

Disadvantage: adhesion issues (delamination) Issues on Cu welding arreas

Best results are not always expected:

	Standard	Oxide-free
RRR	~10	~30
$T_{\rm c}$ (K)	9.51 ± 0.01	9.36 ± 0.04
Ar cont. (ppm)	435 ± 70	286 ± 43
Texture	(110)	(110), (211), (200)
	Fiber texture	Hetero-epitaxy
Grain size (µm)	0.1-0.2	1-5
λ/λ_{clean}	1.51 ± 0.04	1.04 ± 0.09
H_{c2} (T)	1.15 ± 0.025	0.77 ± 0.01
a_0 (Å)	3.3240(10)	3.3184(6)
Stress (Mpa)	-706 ± 56	-565 ± 78
Strain $\Delta a_{\perp}/a_{\perp}$ (%)	0.636 ± 0.096	0.466 ± 0.093

where

Courtesy: P. Jacob - EMPA

Equi-axed grains, size ~ $1-5\mu m$ In plane diffraction pattern: zone axis [110] Heteroepitaxy Nb (110) //Cu(010) , Nb (110) //Cu(111),Nb (100) //Cu(110)

Bulk like films did not perform better initially ! (but recent changes !!!)

□ <u>New approaches:</u>

Bulk machining Electroplating Laser surfacing ...

diagram

Courtesy: G. Rosaz, K. Scibor - CERN

SEAMLESS HIE-ISOLDE CAVITY

FILM DENSIFICATION / MITIGATION OF THE Q-SLOPE

SRF 2023 GRAND RAPIDS

SRf Tutorials 2023 - Beyond Bulk Nb

Jefferson Lab
Development of Nb/Cu Cavities by Energetic Condensation

Development of Nb/Cu SRF Surfaces Development (HiPIMS & ECR)

Tailored Nb films via energetic condensation

- Tune thin film structure and quality with ion energy and substrate temperature on a variety of substrates (amorphous, polycrystalline and single crystal)
- **Achieve film structures and properties only achievable at higher temperature with classic coating methods**
- □ Tune RRR values from single digits to bulk Nb values →No intrinsic limitations
- **Lower impurity (H) content than bulk Nb**
- **Good adhesion to the substrate (delamination threshold : function of ion energy and temperature)**
- Tailoring interface with high energy and subsequent growth at energy minimizing defect creation can contribute to lower R_s and mitigate Q-slope.

Tailored Nb films via energetic condensation

- Tune thin film structure and quality with ion energy and substrate temperature on a variety of substrates (amorphous, polycrystalline and single crystal)
- **Achieve film structures and properties only achievable at higher temperature with classic coating methods**
- □ Tune RRR values from single digits to bulk Nb values →No intrinsic limitations
- **Lower impurity (H) content than bulk Nb**
- **Good adhesion to the substrate (delamination threshold : function of ion energy and temperature)**
- Tailoring interface with high energy and subsequent growth at energy minimizing defect creation can contribute to lower R_s and mitigate Q-slope.

Tailored Nb films via energetic condensation

- Tune thin film structure and quality with ion energy and substrate temperature on a variety of substrates (amorphous, polycrystalline and single crystal)
- **Achieve film structures and properties only achievable at higher temperature with classic coating methods**
- □ Tune RRR values from single digits to bulk Nb values →No intrinsic limitations
- Lower impurity (H) content than bulk Nb
- **Good adhesion to the substrate (delamination threshold : function of ion energy and temperature)**
- Tailoring interface with high energy and subsequent growth at energy minimizing defect creation can contribute to lower R_s and mitigate Q-slope.

- Basic material processes exist
 - proof-of-principle demonstrations for modest field applications
- Principal challenges at present
 - Establish adequate process controls
 - Address technical challenges with scale-up

(Though not fundamental, these require serious resource investment to establish "industrial" capability).

- Resources drive the timeline.
- Develop cavity coating & refine process parameters in parallel on smaller scales.
- Done right, reasonable stepping stone to truly "engineered surface", with all the benefits of high Q, high field, low cost, high reliability systems.

OTHER SUPERCONDUCTORS

Office of Science

MOST COMMON SUPERCONDUCTORS

- A2 (e.g. NbTi, Transition metal alloys, BCC structures)
- B1 (e.g. NbN, NbTiN, Transition metal carbide or nitride, NaCl structures)
- A15 (e.g. Nb₃Sn, Compounds, NaCl structures)
- 2-D SC (Compounds, anisotropic)
 - MgB_2
 - Cuprates, Pnictides
 - (others TaS₂, organic...)

- SPECIAL SRF: METAMATERIALS (Multilayers)

A2 SC ALLOYS: e.g. NbTi

B1 SC COMPOUNDS: e.g. NbN, NbTiN

BCC pure metal + smaller atoms (N, C) in interstitial location => NaCl structure

```
NbN cubic phase : T<sub>c</sub> ~17-18 K
NbTiN stabilization of cubic (SC) phase NbN
not too sensitive to local variation
of composition !
```

Solid solution => relatively easy fabrication (thermal diffusion, . 20 reactive sputtering...)

Good model SC

Widely used for JJ and SC electronics

https://link.springer.com/content/pdf/10.1007%2F978-1-4757-0037-4.pdf

Critical temperature versus nitrogen-to-metal ratio for various B1-structure nitrides of the transition metals (data assembled by Hulm and Blaugher).

NbTiN RF Results

INFN : reactive sputtering with Ar/N_2 in DC Triode Magnetron Sputtering @ 600°C and 200°C

 $(Nb_{1-x}Ti_x)N$ films with 1-x<0.5 present a lower calculated surface impedance, lower critical fields and better surface properties than NbN, especially when deposited at low temperatures.

R. Di Leo et al. J. of Low Temp. Phys, vol 78, n1/2, pp41-50, 1990

Reactive Magnetron Sputtering:

CEA Saclay :

NbTiN films deposited on 12 cm copper disks by magnetron sputtering and tested in a cylindrical TE_{ou} cavity

reached RF field levels of 35 mT

low residual surface resistance (< 100 n Ω at 4 GHz) with a very small BCS resistance

4 cavities deposited but no RF measurement due to film blistering on large area of the cavity. Rs slope significantly decreased when coating with bias ranging from -50V to -100V

CERN:

P. Bosland et al. S. Cantacuzène et al.

Samples and six 1.5 GHz Cu cavities coated by reactive cylindrical magnetron sputtering Best cavity result for thicker film (4.3 μ m) and lower deposition temperature (265°C) Rs = 330n Ω @ 4.2K

M. Marino, Proceedings of the 8th Workshop on RF Superconductivity, October 1997, Abano Terme (Padua), (Rep) 133/98, vol.IV, p.1076

Figure 3 Surface resistance vs temperature for a NbTiN sample, at 4 GHz.

A15 COMPOUNDS

A15 COMPOUNDS : HIGH T_c

	compound	Т _с (К)	compound	Т _с (К)	compound	Т _с (К)	compound	Т _с (К)
	Ti₃lr	4.6	V ₃ Os	5.15	Nb ₃ Os	0.94	Cr₃Ru	3.43
Iafte	Ti ₃ Pt	0.49	V ₃ Rh	0.38	Nb ₃ Rh	2.5	Cr ₃ Os	4.03
	Ti₃Sb	5.8	V ₃ Ir	1.39	Nb ₃ Ir	1.76	Cr₃Rh	0.07
			V ₃ Ni	0.57	Nb ₃ Pt	10	Cr ₃ Ir	0.17
	Zr ₃ Au	0.92	V ₃ Pd	0.08	Nb₃Au	11		
	Zr ₃ Pb	0.76	V ₃ Pb	3.7	Nb ₃ Al	20.3	Mo₃Re	15
			V ₃ Au	3.2	Nb₃Ga	18.9	Mo ₃ Os	11.68
			V ₃ Al	9.6	Nb ₃ In	8	Mo ₃ Ir	8.1
		ſ	V ₃ Ga	15.4	Nb₃Ge	23	Mo ₃ Pt	4.56
	e <mark>r Due-Hugues]</mark>		V ₃ In	13.9	ND ₃ Sh	18.3	Mo ₃ Al	0.58
<u>[urte</u>	<u>-</u>		V ₃ Si	17.1	ND ₃ Bi	2.25	Mo ₃ Ga	0.76
			V ₃ Ge	7			Mo ₃ Si	1.3
			V ₃ Sn	4.3	Ta₃Ge	8	Mo ₃ Ge	1.4
			V ₃ Sb	0.8	Ta ₃ Sn	6.4		
					Ta ₃ Sb	0.72		

 Among the Nb and V based high Tc (15 – 20 K)

- Nb₃Ga and Nb₃Ge do not exist as stable bulk materials at 3:1 stoichiometry
 - Nb₃Al exists only at high temperature causing excessive atomic disorder

•

•

Production of above materials need non equilibrium processes

- V₃Ga, V₃Si & Nb₃Sn are stable bulk material and have high T_c
 - Nb₃Sn =Special interest for SRF since the 1980's
- Another A-15 compound holding promise is Mo₃Re (Tc=15K)

Phases with proper stoichiometry (A₃B) not stable in normal condition (RT to Cryogenic temp) => Quenching necessary

A15 COMPOUNDS : HIGH T_c

	compound	Т _с (К)	compound	Т _с (К)	compound	Т _с (К)	compound	Т _с (К)
	Ti₃lr	4.6	V ₃ Os	5.15	Nb ₃ Os	0.94	Cr₃Ru	3.43
- - - - - - - - - - - - - - - - - - -	Ti ₃ Pt	0.49	V ₃ Rh	0.38	Nb ₃ Rh	2.5	Cr ₃ Os	4.03
	Ti₃Sb	5.8	V ₃ Ir	1.39	Nb ₃ Ir	1.76	Cr₃Rh	0.07
			V ₃ Ni	0.57	Nb ₃ Pt	10	Cr ₃ Ir	0.17
	Zr ₃ Au	0.92	V ₃ Pd	0.08	Nb₃Au	11		
	Zr ₃ Pb	0.76	V ₃ Pb	3.7	Nb₃Al	20.3	Mo₃Re	15
			V ₃ Au	3.2	Nb₃Ga	18.9	Mo ₃ Os	11.68
			V ₃ Al	9.6	Nb₃In	8	Mo ₃ Ir	8.1
		ſ	V ₃ Ga	15.4	Nb₃Ge	23	Mo ₃ Pt	4.56
lafte	<u>fte^r Due-Hugues]</u>		V ₃ In	13.9	ND ₃ SN	18.3	Mo ₃ Al	0.58
			V ₃ Si	17.1	ND3BI	2.25	Mo ₃ Ga	0.76
		L. L	V ₃ Ge	7			Mo ₃ Si	1.3
			V ₃ Sn	4.3	Ta₃Ge	8	Mo ₃ Ge	1.4
			V ₃ Sb	0.8	Ta₃Sn	6.4		
					Ta₃Sb	0.72		

Extreme brittleness !!!

- cannot be plastically formed
- thin/thick film route only !

μm

Phases with proper stoichiometry (A₃B) not stable in normal condition (RT to Cryogenic temp) => Quenching necessary Among the Nb and V based high Tc (15 – 20 K)

٠

•

٠

•

- Nb₃Ga and Nb₃Ge do not exist as stable bulk materials at 3:1 stoichiometry
 - Nb₃Al exists only at high temperature causing excessive atomic disorder

Production of above materials need non equilibrium processes

- V₃Ga, V₃Si & Nb₃Sn are stable bulk material and have high T_c
- Nb₃Sn =Special interest for SRF since the 1980's
- Another A-15 compound holding promise is Mo₃Re (Tc=15K)

nm

A15 COMPOUNDS : NARROW DOMAIN OF SC

B atoms occupy corners and center of BCC structure

A atoms form orthogonal chains bisecting the faces of the BCC unit cell. Linear Chain Integrity is crucial for Tc (long-range order required)

Narrow range of concentration for the SC phase:

- Highest T_C area is even narrower
- Difficult to get uniform SC phase everywhere*
- Special issues at grain boundaries: "intrinsic" local deviation of stoichiometry*
- In Nb₃Sn wires : GB exhibit degraded SC => weak links, pinning centers

Compare with ξ

NB₃SN ON NB (thermal way)

Pioneer work: Wuppertal, Cornell

@ 4,2 K: Q₀ x 20 compare to Nb, @ 2K ~ the same

Limited in E_{acc} , best results today ~20 MV/m

Important developments: FNAL, JLAB, CERN, PKU....

EFFECTS OF LOCAL DEFECTS

=> We have to reduce defect density (yes but which ones?)

Issues with Nb₃Sn by vapor diffusion

https://indico.jlab.org/event/405/contributions/7865/attachments/6613/8979/Zeming%20Sun Thin%20film%20workshop%20slide.pdf

Developments around Nb₃Sn

Witness sample analysis correlating RF performance and coating parameters

with and without Q-slope Grain size and roug

Coating with small grain sizes, smoother surfaces, and thinner (~ 1 μ m) thinner coating with no Sn segregation or deficient grain boundary correlate with better-performing cavities.

to residual resistance

Further coating process optimization to enhance cavity performance is in progress.

U. Pudasaini

Q (4 K)
 Q (2 K)

PAPS NO.35 MD

Multi-cell cavity coating and Nb₃Sn QCM

12 13 14 15

10 11

- Spec: 1E10 @ 10 MV/m
- One cavity was coated at Fermilab and another at Jlab.
- Cavity assembled in the pair and subjected to disassembly because of a leak, and assembled again with some degradation in the cavity performance
- Ready to be installed into a quarter module; test in the UITF later this year.

Based on G. Eremeev's ECA, Jlab cavity work supported by R&D fund. Jefferson Lab

2 3

5

Limited by multipacting (no quench)

Original C75 cavity made of large grain material

Eacc (MV/m)

Material studies and development of Nb₃Sn-coated cavities

Developments around Nb₃Sn

Reduced He volume

Efficient cooling

Horizontal Test Cryostat for conduction-cooled SRF cavities

G. Ciovati et al., "Development of a prototype superconducting radio-frequency cavity for conduction-cooled accelerators", arXiv:2302.07201 [physics.acc-ph], 2023

Jefferson Lab

Ο

0

A15 Compounds – Preparation Methods

Nb3Sn: Other Deposition Methods

□ Sputtered Nb₃S films on copper

- o Activities at <u>Cern</u>, STFC, <u>Jlab</u>, Cornell,,,
- o RT deposited films : right composition but no A15 structure
- Heating of substrate (CERN)
- o And/or post annealing

Other issues

- o Cracks on the layer (due to differential dilatation coef)
- o Diffusion of copper in the layer
- Carrier gas incorporation (Ar, Kr)
- Sn evaporation at higher temperature (> 1000°C)

E A Ilyina et al

2,919

2.277

Kr Pcoat=8.10-3mbar, Tcoat=705°C

(b)

Cylindrical Magnetron Sputtering of Nb₃Sn coating (2.6 GHz Nb SRF cavity)

Nb3Sn: Other Deposition Methods

Electrochemical deposition + diffusion through copper

- Proposed at FNAL
- o Inspired from wire fabrication
- Not expensive !!!!

Fig. 3: Sequence of deposited layers (left), and pictures of sample at each deposition step (right).

- Multilayer is heated => solid state diffusion
- Cu lowers the formation Tp° of A15 phase and suppresses the unwanted $NbSn_2$ and Nb_6Sn_5 phases.

Bronze Route

- Nb deposition on CuSn
- o Heat treatment to diffuse Sn into Nb
- Not expensive !!!!

...non-exhaustive list

Method	Sn vapor/ liquid diffusion	Sputtering ! target	Co-sputtering	Sequential sputtering + annealing	Bronze routes (electrochemical deposition + annealing)
substrate	Nb only	Nb or Cu	Nb or Cu	Nb or Cu	Nb or Cu
Activities at	Cornell FNAL Jlab INFN KEK	Cornell Cern Jlab INFN STFC FSU	STFC* Peking U. Darmstadt Wisconsin U.*	IMP Jlab ODU FNAL	IMP Cornell FNAL FSU E2P

* In Multilayer structures

— NB : work on V₃Si also in progress

OTHER A15 COMPOUNDS

S. Deambrosis et al., Physica C 441 (2006) 108-113

Highly ordered compound, RRR~80 achievable, max Tc (17.1K) when stoichiometric composition (25at.% Si)

V₃Si layers by silanization of V substrate and Thermal Diffusion

V substrate heated to get SiH_4 decomposition and Silicon diffusion

Film grown by silanization with p (SiH₄) ~ 10^{-3} - 10^{-4} mbar

* Diffusion parameters and silane flow rate have been optimized

- * Tc ~ 16 K is routinely obtained
- * RF measurement on 6 GHz V-cavities will be available soon

To improve film quality a new set-up capable of depositing up to 800 °C was developed. Sapphire samples were also used at this higher temperature.

Sapphire at 650 °C showed a rough surface finish. However, increasing the temperature closer to 700 °C leads to a smoother film with $T_{\rm C}$ 15.2 °k

02/08 EM images of V3Si deposited ChirSapphile at 700 of CF Superconductivity

SEM images of V₃Si deposited on Sapphire at 650 °C

Mo_3Re thin films by DC magnetron deposition: $Mo_{75}Re_{25}$, $Mo_{60}Re_{40}$

Solid solution , free of bulk and surface inhomogeneities, low intersticials solubility compared to Nb, low $\kappa,$ high H_{c1} (500G)

Bulk in σ phase, tetragonal low T_c (6K)

but T_c up to 18K reported in literature with bcc structure

S.M. Deambrosis et al., Physica C 441(2006) 108-113

* Deposition on Sapphire, Cu and Nb substrates *Substrate temperature up to 950^o C *Post-annealing to increase crystallinity and

transition sharpness

* Tc = 12K obtained for composition $Mo_{60}Re_{40}$

Higher deposition temperature, longer annealing time

Fig. 4. A Mo₇₅Re₂₅ film deposited on Cu transition curve: deposition T = 680 °C, $T_c = 11.18$, $\Delta T_c = 0.08$ K.

SRf Tutorials 2023 - Beyond Bulk Nb

Courtesy R. Valizadeh

2-D SC (Compounds, anisotropic)

- $-MgB_2$
- -Cuprates, Pnictides
- -Multilayers

Office of Science

MAGNESIUM DIBORIDE (MgB₂)

BCS type superconductor

□ T_c ~40 K, two-gap nature

Advantages:

- \circ Very high T_C (higher temp operation)
- Semimetal, cheap (fertilizer !)
- ξ, 11 of high quality* MgB₂ similar to Nb (~50 nm) (transparency of GB to current flow)
- $\circ \quad \text{Low } \rho_{\text{n}} \textit{ (lower } \textit{R}_{\text{s}} \textit{)}$

Disadvantages:

- Orientation issues (in polycrystalline materials !)
- \circ RF dominated by lower gap \otimes !
- Still better than Nb :

```
\Delta^{\text{Nb}}=1.5 \text{ meV} < \Delta_{\text{T}}^{\text{MgB2}}=2.3 \text{ meV} < \Delta^{\text{Nb3Sn}}=3.1 \text{ meV}
```

- $<\Delta_{\sigma}$ = 7.1 meV
 - \circ Sensitive to H₂O (capping necessary ?)
 - \circ Thin film routes difficult to achieve

Phase diagram: at low Mg pressure only extremely low deposition temperatures can be used

Optimal T for epitaxial growth $\sim T_{melt}/2$

 \circ For MgB₂ T_{melt}/2 = 540°C => P^{Mg} ~11 Torr

• Too high for UHV deposition techniques (PLD, MBE...)

At PMg = 10-4-10-6 Torr, and T_{sub} \sim 400^{\circ}C

 \Box Compatible with MBE, and other deposition techniques MqB₂ is stable, but

no MgB₂ formation:

Mg atoms re-evaporate before reacting with B

At $P^{Mg} = 10^{-4} \cdot 10^{-6}$ Torr, and lower T

 \circ MgB₂ is stable,

○ If Tsub >250°C, free Mg is lost because the re-evaporation rate is higher than the impinging rate If Tsub < 250°C

.Growth rate is very slow, (kinetically limited by available Mg)

> evaporation pressure of Mg from MgB_2 < decomposition curve of MgB_2 < Mg vapor pressure

20

(Torr)

pressure

partial

50

 $\breve{\Xi}$ 10⁻¹⁰

MgB₂ – HPCVD ON METAL SUBSTRATES

[X. Xi- TempleUniversity]

HYBRID PHYSICAL CHEMICAL VAPOR DEPOSITION

Polycrystalline MgB₂ films deposited: On stainless steel, Nb, TiN,

- and other substrates.
 - Flat samples and tubes (conformational)
 - Fitted for SRF apps:
 - RRR>80
 - low resistivity (<0.1 $\mu\Omega$) and long mean free path high Tc ~ 42 K (due to tensile strain),
 - low surface resistance, short penetration depth
 - smooth surface (RMS roughness < 10 Å with N_2 addition) good thermal conductivity (free from dendritic magnetic instability)

Keys to high quality MgB₂ thin films: High Mg pressure for

thermodynamic stability of MgB₂

- Oxygen-free or reducing environment Clean Mg and B sources
- o Preventing formation of spurious phase (e.g.
- Mg-Cu alloy islands on a Cu substrate

Reactor/reaction designs require complex calculation in thermodynamics and hydrodynamics

MGB₂ – OTHER ROUTES

□ In-situ reactive evaporation @ 550°C

- o High quality flat samples
- Difficult to apply to complex geometries

Plasma electrolytic oxidation (PEO)

- MgB₂ particles in suspension in an electrolyte MgB₂ Islands deposited on the surface
- o Issues : homogeneity, purity

To be further explored

RF measurement @ MIT/Lincoln Lab

[R. Valizadeh, STFC]

HPCVD MGB₂ – RF MEASUREMENTS

11.4 GHz TE013 cavity @ SLAC

- The MgB₂ coatings were also characterized at 11.4GHz at SLAC using a cryogenic RF system.
- The samples showed a Q factor comparable to a Nb reference sample and higher than the Cu reference sample.

Sample

Ε

Oates et al., SUST

23, 034011 (2010)

• The films showed a Tc of 37 K.

1E+5 B.P.Xiao et al., SUST 25 1E+4 (2012) 095006. Effective Rs [μΩ] 1E+3 1E+2 ◆ MgB₂-200-I ▲ MgB₂-200-II 1E+1 MgB₂-350 Large grain Nb 1E+0 10 20 30 4

□ 7.5 GHz sapphire-loaded TE011 cavity at JLab

Stripline resonator

Sample Temperature [K]

Scaled to 1,5 Ghz

Lower surface resistance comparable to Nb film.

THE IMPORTANCE OF MEAN FREE PATH, MgB₂ EXAMPLE

- Most developments of HT_c are done in view of magnet applications : small ξ high 11 by playing with ℓ
- Small x makes the superconductors very sensitive to (usual) crystalline defects (wanted for magnets, not for SRF)
- Typical values found in literature for MgB₂ : λ ~100-150 nm ξ ~ 5-10 nm

YBCO FAMILY... NOT FOR SRF !

- Mono crystal: Jc maximum for (a,b) planes and minimum when // c axis
 - ξc (~0,03 nm) <<ξa, ξb (~1-2 nm) => "layered material"
- Realistic material : polycrystalline, ceramic, fragile...
 - ξ c << disordered area at G.B => grains are decoupled (weak links)
 - => try to introduce preferential orientation (epitaxy): difficult to get on a cavity (but is applied to fabricate tapes for magnets)

D-symmetry of the gap

- superconducting gap is also anisotropic
- = zero at 4 line nodes located at the diagonals of the Brillouin zone
- $_{-}$ 1'= 0 => power law for R_S: R_S α to T²-T³
- For the recall: gaps of conventional SC have s symmetry: isotropic and $R_S \alpha e^{-1'/T}$ (BCS resistance)

http://mason.gmu.edu/~grobert1/2014syl641.htm

Twin boundary in YBCO

https://areeweb.polito.it/ricerca/ superconductivity/melt.htm

PNICTIDE FAMILY... MAYBE YES ?

Oxypnictide base: ReOMPn

- M = Fe, Co, Ni, Pn = As or P 0
- Re = La, Nd, Sm, Pr 0

A lot in common with YBCO

- High T_C (10-55 K up today) Layered structure 0
- Brittle material \bigcirc
- d-wave symmetry observed for some member of the family 0

 MgB_2

But most compounds exhibit s-wave gaps...?

• Opening for SRF application ?

Jefferson Lab

PNICTIDE FAMILY... MAYBE YES ?

A lot in common with YBCO

✤ High T_C (10-55 K up today)

Layered structure

Brittle material

but

Most compounds exhibit s-wave gaps

Very sensitive to impurities content (either magnetic or not)

NaFe_{1-x}Co_xAs (x = 0.0175) = ferromagnetic

$$NaFe_{1-x}Co_xAs (x=0.045) = SC$$

MULTILAYERS

Office of Science

NANOCOMPOSITES MULTILAYERS

Taking advantage of the high –Tc superconductors with much higher H_c without being penalized by their lower Hc1...

Multilayer coating of SC cavities: alternating SC and insulating layers with d_{sc} < λ

Higher T_c thin layers provide magnetic screening of the Nb SC cavity (bulk or thick film) without vortex penetration

Structures proposed by A. Gurevich in 2006, SRF tailored

Dielectric layer

- \circ Small \perp vortex (short -> low dissipation) Quickly coalesce (w. RF)
- Blocks avalanche penetration
- => Multilayer concept for RF application

□ Nanometric S/I/S/I/ layers deposited on Nb

- SC nanometric layers (≤ 100 nm) => H_{C1}^{\uparrow} => Vortex enter at higher field
- $\circ~$ Nb surface screening => allows high magnetic field inside the cavity => higher $\rm E_{acc}$

SC w. high T_C than Nb (e.g. NbN):
$$R_{s}^{NbN} \approx \frac{1}{10} R_{s}^{Nb}$$

=> Q_{0}^{multi} >> Q_{0}^{Nb}

FIRST APPROACH: TRILAYERS

Meissner state stable if:

- \blacksquare J(0) < J_d = H_s/ λ and J(d) < J_{d0} = H_{s0}/ λ_0
- If d is small, H_{SH}^{S} is high, but most of the field reach S_0
- \blacksquare If d is thicker, H_{SH}^{S} is lower, but screening is more effective
- an optimum thickness and a maximum screening field!!!

$$\frac{(e^{2d/\lambda} - k)H}{e^{2d/\lambda} + k} \le H_s, \qquad \frac{H(1+k)e^{d/\lambda}}{e^{2d/\lambda} + k} \le H_s,$$
$$d_m = \lambda \ln(\mu + \sqrt{\mu^2 + k}), \qquad \mu = \frac{H_s\lambda}{(\lambda + \lambda_0)H_{s0}}$$
$$H_m = \left[H_s^2 + \left(1 - \frac{\lambda_0^2}{\lambda^2}\right)H_{s0}^2\right]^{1/2}$$

Maximum screening field H_m at the optimum S thickness $d^{S} = d_m$

d

SIS OPTIMIZATION: IMPORTANCE OF MODELS

TRILAYER OPTIMIZATION (...)

A. Gurevich, T. Kubo

Go for realistic condition

- Layers present defects, non-negligible surface roughness, non-uniform thickness.
- \rightarrow H_{SH}^S suppressed due to of the local screening current enhancement.
- Introducing material suppression factor $\eta = f(\text{defect size and aspect ratio}, \xi^s)$
- $\eta \sim 0.85$ for typical electropolished Nb surface)
- H_{SH}^{SIS} and optimal S layer thickness dm^S can be determined w. surface topographical data

103 10^{2} 200 200 7200 (uu) 150 Ĩ 150 150 ds 210 Ideal Nb substrate thickness thickn 100 100 with $B_{C1}=170 \text{ mT}$ 100 S layer layer ŝ 50 50 10 10 10² 103 10 10² 10³ 10 I layer thickness d_{T} (nm) I laver thicknes $s d_T$ (nm) See exp proof later on

Nb with defects^{*}, with B_{C1} =50 mT

* e.g. morphologic defects that allow earlier vortex penetration

WHAT IS THE LIMIT $(H_{fp}/H_{C1}/H_{SH})$?

- Real world cavities behavior is dominated by a few number of defects
- It is very important to measure the penetration field of samples in realistic conditions

EXPERIMENTAL DETAILS

Nb – INSULATOR – NbN MODEL

NbN coating by Magnetron Sputtering

NbN single layers series

- NbN SL / "thick" Nb layer
 - Magnetron sputtered
 - MgO as dielectric layer
- Far from perfect...

Nb (nm)	MgO (nm) Calc(actual)	NbN (nm) Calc(actual)	Т _с (К)
250†	14	0	8.9
250 ⁺	14	25	15.5
500	10 (10.3)	50 (65)	15*
500	10 (8.4)	75 (72)	14.1*
500	10 (9.8)	100 (94)	14*
500	10	125	14.3*
500	10 (6.7)	150 (132)	15.9*
500	10 (10.4)	200 (164)	15*

† Not same batch, deposited on the same conditions, but substrate = sapphire
*As determined with magnetometry, see below.

SPUTTERED MATERIALS...

COMPARISON WITH THEORY

Nb with defects*, with $B_{C1}=50 mT$

* e.g. morphologic defects that allow earlier vortex penetration See SST paper cited earlier

- The enhancement of the field penetration increases with thickness of NbN
- It reaches a saturation at thicknesses > 100 nm

COMPARISON WITH THEORY

SRF 2023 GRAND RAPIDS

SRf Tutorials 2023 - Beyond Bulk Nb

CLOSEUP OF 3rd HARMONIC SIGNAL

ROLE OF THE DIELECTRIC LAYER !

†*B. Bean and J. D. Livingston, Phys. Rev. Lett.* 12, 14 (1964).

H // surface => surface barrier[†] A defect locally weakens the surface barrier

1st transition, vortex

blocked by the insulator

~100 nm => low dissipation.

2nd transition, propagation of vortex

avalanches (~100 μ m) => high dissipation.

Dielectric layer = efficient protection !!!

SIS : IRREVERSIBILITY => NO VORTEX PINNING <= NO VX ENTRY ?

Each individual layer : 3 defects, but combination: seems protected

SIS Multilayered Structures based on NbTiN

Measurement on NbTiN SIS structures on 1" & 2" Nb substrates

SRf Tutorials 2023 - Beyond Bulk Nb

Jefferson Lab

1st RF TESTS

NbTiN/AIN/Nb structures - RF characterization

SIS structures coated on ECR Nb/Cu film and bulk Nb: 24h-bake, coating and annealing for 4 h at 450°C.

AIN

NETIN

.....

 \mathbb{R}

Sample temperature T, [K]

RF Measurement in 7.5 GHz sapphire-loaded TE₀₁₁ cavity

- Indium gasket presents some defects measured with thermometric map => extra RF losses
- Residual resistance comes from NbN + bulk Nb substrate + indium gasket. Further investigations needed.

Ф.

8

SRf Tutorials 2023 - Beyond Bulk Nb

10

 \mathcal{T}

ML WITHOUT DIELECTRIC INTERLAYER

The SS boundary provides an additional barrier to prevent penetration of vortices. It would not be as robust as the I layer of the SIS structure, but it also contributes to pushing up the onset of vortex penetration. *[Kubo, SST]*

Wrapping Up...

Office of Science

A compromise between:

- High superconducting/RF performance (High Tc, High superheating field)
- Easy fabrication process,
 - = high reproducibility at "industrial scale"
 - Easy process to go from 1-cell to multi-cells or complex shapes
 - Easy process to adapt to various frequencies
- Tunability
 - Beware of brittle materials !
- Low sensitivity to trapped flux upon cooling down

Few crystalline defects or a structure not too sensitive to them (e.g. SIS)

□ Thin films on copper = route to help cost savings

- Cheaper manufacturing
- Higher operation temperature
- Higher gradients : lower capital costs

COST SAVINGS beyond bulk Nb : Construction & Operations

Courtesy C. Antoine, IPAC 2023

■ LHC project report 317 (S. Claudet, Ph. Gayet, Ph. Lebrun, L. Tavian and U. Wagner, "Economics of large helium cryogenic systems: experience from recent projects at CERN")

4.5 K instead of 2 K: investment decreased by~35-40 % !!!

- e.g. ESS cryogenic total cost ~40 M€
- **__** ~ 15 M€ savings ?

- **Carnot efficiency η**_c (thermodynamics)
- **Refrigerator efficiency η**_{Th} (real life compared to physics)

$$\eta_{c} = \frac{T_{c}}{T_{h} - T_{c}} \approx \begin{cases} 1/70 \text{ for } T_{h} = 300 \text{ K}, T_{c} = 4.2 \text{ K} \\ 1/150 \text{ for } T_{h} = 300 \text{ K}, T_{c} = 2 \text{ K} \end{cases}$$
$$\eta_{th} = \begin{cases} 25 - 30\% \text{ at } T = 4.2 \text{ K} \\ 15 - 20\% \text{ at } T = 2 \text{ K} \end{cases}$$

- **_** To remove 1W @ 80K: **~20W** @ 300K is needed
- **_** To remove 1W @ 4.2K: ~250W @ 300K is needed
- _ To remove 1W @ 2K: ~750W @ 300K is needed

RF surface resistance

Higher Tc materials:

- Same cooling power @ 4.5 K instead of 2K
- _ Or: lower cooling power at 2 K

4.5 K instead of 2 K: plug power divided /3 !!!

- Less risks of He pollution
- Easier maintenance...

SRF 2023 GRAND RAPIDS

- Theoretical and material studies to gain in-depth understanding of the fundamental limitations of thin film superconductors under radio-frequency fields
- > Advanced coating technology for Nb/Cu and alternative materials, Nb₃Sn, V₃Si, NbTiN ...
 - Energetic condensation (electron cyclotron resonance (ECR), HiPIMS, kick positive pulse...)
 - Atomic Layer Deposition (ALD)
 - o Hybrid deposition techniques
- Cavity deposition techniques for development of superconductor-insulatorsuperconductor (SIS) nanometric layers to further enhance the performance of bulk Nb and Nb/Cu

Improved cavity fabrication & preparation techniques

- electroforming, spinning, hydroforming, electro-hydro forming, 3D additive manufacturing
- environmentally friendly electropolishing, diamond cutting, nano-polishing, plasma etching ...)
- Cryomodule design optimization
- > Improvement of **accelerator ancillaries** with advanced deposition techniques
 - HiPIMS Cu coated bellows, power couplers...

OSCOD\

STEM. PCT

Bellows

Magnetometry

HIPIMS

Superconducting cavities are dominated by their surface quality (Niobium AND other SC !)

- □ Niobium is close to its ultimate limits, but can be surface engineered (doping)
- □ H_{SH} difficult to reach in real "accelerator cavities" (low T, large scale cavity fabrication, surface defects,...)
- Renewed activity on bulk-like Nb films (cost issues) and high H_{SH} SC e.g. Nb₃Sn or NbTiN (higher performances)
- □ SIS structures seem to be a promising way to go toward realistic complex materials (+ Nb cavity upgrade)
- \Box Look for higher Q₀, not only E_{acc} !

□ A TECHNOLOGICAL REVOLUTION FOR SRF CAVITIES IS WITHIN REACH!

valente@jlab.org

• Aknowledgement

Inspiration and material from earlier lectures from:

Prof. V. Palmieri, INFN, Dr. C. Antoine, CEA Saclay; Prof. A. Gurevich, ODU; ...

• Next TFSRF Workshop (11th)

September 2024 In PARIS Area, France

Acknowledgement

