Commissioning of the UHH Quadrupole Resonator at DES

Ricardo Monroy-Villa on behalf of the SRF R&D team Grand Rapids, 29.06.2023

Bundesministerium für Bildung und Forschung Universität Hamburg

MATTER AND TECHNOLOGIES ACCELERATOR RESEARCH AND DEVELOPMENT

Why is the QPR important?

Why is the QPR important?

QPR used for RF characterization of flat cylindrical samples

95 mm

Advantages:

- Direct measurement of sample
- Typical SRF conditions, e.g. 2 K, 1.3 GHz, and 20 MV/m
- Same surface can be analysed with surface characterization methods
- Easier sample preparation and exchange
- Faster turn around times and lower costs compared to cavities
- Exchange between labs (CERN, HZB, DESY, and JLab)

QPR allows study of samples across a wide range of parameters

QPR allows study of samples across a wide range of parameters

First study case:

- High RRR sample on loan from HZB
- 110 µm BCP as a final treatment with no 800 °C annealing
- Highly contaminated with H ("Q-disease")
- Test 1 (Q₃) on 2022 and Test 2 (all Qs) on 2023

QPR successfully fabricated at Zanon R.&I. SRL

Commissioning at DESY ongoing – so far successfull

UHH QPR design based on HZB system.

Cutoff tube, vessel, rods, and pole shoe before welding.

QPR is moved around with the trolley.

QPR is installed in insert.

QPR successfully fabricated at Zanon R.&I. SRL

Commissioning at DESY ongoing – so far successfull

UHH QPR design based on HZB system.

After fabrication, the QPR underwent a standard chemical treatment for SRF cavities.

Cutoff tube, vessel, rods, and pole shoe before welding.

QPR is moved around with the trolley.

QPR is installed in insert.

Simulations and measurements of RF modes agree

Room temperature

Simulations and measurements of RF modes agree

Room temperature

Simulations and measurements of RF modes agree

Room temperature

Design optimization #1: stiffening of the rods

HZB QPR:

⇒ CW or pulsed RF power shouldn't have the same frequency

R. Kleindienst, Ph.D. Thesis, Universität Siegen, Siegen, Germany, 2017.

Design optimization #1: stiffening of the rods

UHH QPR:

Metal bars welded to the rods to enhance their rigidity.

Sensors on top in x-,y- & zdirection.

Mechanical spectrum of the rods.

Design optimization #1: stiffening of the rods

UHH QPR:

Metal bars welded to the rods to enhance their rigidity.

Sensors on top in x-,y- & zdirection.

Mechanical spectrum of the rods.

Design optimization #2: prevent parasitic heating

Dipoles are inevitably excited in all QPR devices due to symmetry reasons.

Dipoles **do not vanish** in the coaxial gap and can reach the bottom!

⇒ sample heats up, leading to an **overstimation of R_s**

Design optimization #2: prevent parasitic heating

S. Keckert, W. Ackermann, H. De Gersem, X. Jiang, A. Ö. Sezgin, M. Vogel, M. Wenskat, R. Kleindienst, J. Knobloch, O. Kugeler, D. Tikhonov. AIP Advances 1 December 2021; 11 (12): 125326

Design optimization #2: prevent parasitic heating

S. Keckert, W. Ackermann, H. De Gersem, X. Jiang, A. Ö. Sezgin, M. Vogel, M. Wenskat, R. Kleindienst, J. Knobloch, O. Kugeler, D. Tikhonov. AIP Advances 1 December 2021; 11 (12): 125326

Auxiliary devices installed in the calorimetry chamber

- **T-sensor:** CERNOXTM T_1 used for measurements T_2 , T_3 and T_4 for control purposes T_4 also used for thermal
 - Heater: 50 Ω Cu resistor

conductivity measurements

⇒ Interconnected in closed-loop controller

Auxiliary devices installed in the calorimetry chamber

• **T-sensor**: CERNOX™

 T_1 used for measurements

 T_2 , T_3 and T_4 for control purposes

 T_4 also used for thermal conductivity measurements

• Heater: 50 Ω Cu resistor

⇒ Interconnected in closed-loop controller

Surface resistance determined by equilibrium condition

$$\Delta P_{\rm DC} \approx \frac{1}{2} R_{\rm s} \cdot \int_{\rm sample} |\boldsymbol{H}|^2 \, dA \propto \frac{1}{2} R_{\rm s} \cdot U$$

T. Junginger. Ph.D. thesis, Ruprecht-Karls- Universität, Heidelberg, Germany, (2012).

Surface resistance determined by equilibrium condition

$$\Delta P_{\rm DC} \approx \frac{1}{2} R_{\rm s} \cdot \int_{\rm sample} |\boldsymbol{H}|^2 \, dA \propto \frac{1}{2} R_{\rm s} \cdot U$$

When RF power is turned off:

$$U \approx \sum_{m}^{N} P_{\rm ref} \Delta t$$

due to overcoupling, all energy decays as reflected power through the input antenna

$$\sigma_{R_{\rm s}} = \pm 10\%$$

T. Junginger. Ph.D. thesis, Ruprecht-Karls- Universität, Heidelberg, Germany, (2012).

R_s of the sample measured for all quadrupole modes Fixed B_{peak} field or P_{for} of 1 W

R_s of the sample measured for all quadrupole modes Fixed B_{peak} field or P_{for} of 1 W

R_s of the sample measured for all quadrupole modes Fixed temperature of T₁=4 K

R_s of the sample measured for all quadrupole modes Fixed temperature of T₁=4 K

London penetration depth for each quadrupole mode

Results from frequency measurements

London penetration depth for each quadrupole mode

Results from frequency measurements

Thermal conductivity measurement

- $\dot{Q}_H = \kappa(T) \cdot A \frac{T_1 T_4}{\Delta z}$
- $\kappa(4.2 \text{ K}) = 81.98 \frac{W}{m \cdot K}$
- \Rightarrow *RRR* \approx 327.93 \pm 6

Summary

• QPR: a device for RF characterization of samples

- Study of samples under operational parameters
- Solved fundamental problem for all QPRs of high R_s at 1.3 GHz

• New QPR (UHH QPR), designed at UHH and DESY

- Based on the successful system at HZB
- Improved rods and sample flange designs lead to simplified operation
- Fabricated at Zanon R. & I. SRL, commissioning on going \rightarrow It is alive!
 - First cooldowns successful
 - Commissioning faster than expected
- HZB Nb sample investigated at all QPR modes → results are as expected for sample with Q-disease
 - Observed $R_s \propto f^2$
 - $-\Delta\lambda$ independent of mode
 - $-\kappa$ in good agreement to high RRR

Outlook

- Continue commissioning and transition to regular operation
 - Switch to digital DAQ system (µTCA)
 - Improve positioning of temp. sensors for $\kappa(T)$ measurement
- 800 °C bake of Nb sample and re-test
- Study mid-T treated and SIS coated samples

For more information about **κ measurements** in other samples:

Cem Saribal MOPMB017

For more information about **new furnace**:

Marc Wenskat WEPWB111

For more information about **mid-T treatment**:

Rezvan Ghanbari *SUSPB010* Christopher Bate *MOPMB022*

For more information about **SIS coatings**:

Isabel Gonzales *WECBA01* Getnet K. Deyu *MOPMB016*

Thank you for your attention!

Thanks to SRF R&D teams at Universität Hamburg, DESY, HZB, CERN, TEMF, Universität Rostock, and Jefferson Lab.

Thanks to the SRF 23 committee for supporting me with through the *Student Grant Program*.

Contact

www.desy.de

DESY. Deutsches Elektronen-Synchrotron Ricardo Monroy-Villa MSL <u>ricardo.monroy-villa@desy.de</u> (+49) 040-8998-3379

