21st International SRF Conference (SRF 2023), June 25-30, 2023

Recent Advances in Fundamental RF Power Couplers

Wencan Xu **Brookhaven National Laboratory**

Electron-Ion Collider

ENERGY Office of Science

Outline

- Brief Introduction of EIC and EIC RF/SRF systems
- EIC FPC development
 - High power, broadband window design
 - Recent TiN coating results
 - Prototype status
 - RF window prequalification
- High normalized power FPCs
- Summary

About EIC

- EIC is an Electron-Ion Collider, to be built at BNL in a partnership between BNL and TJNAF.
 - High Luminosity: L= 10³³ 10³⁴cm⁻²sec⁻¹
 - Highly Polarized Beams: 70%
 - Large Center of Mass Energy Range: E_{cm} = 20 140 GeV
 - Large Ion Species Range: protons Uranium
 - Accommodate a Second Interaction Region (IR)
- Hadron Storage Ring (HSR) provides ion beams, which is to upgrade the existing RHIC accelerator.
- Electron Storage Ring (ESR) provides 5-18 GeV of high current electron beam, which is a new accelerator, including pre-injector, RCS and ESR.
- The EIC will be a game-changing resource for the international nuclear physics community, but it is very challenge to archive all goals.

EIC CDR: https://www.bnl.gov/ec/files/EIC_CDR_Final.pdf

FPC list for ERIC RF/SRF cavities

RF System	Sub System	Freq [MHz]	Туре	Location	# Cavities	# FPC/cavity	FPC power (kW)
Electron Storage Ring	Accel / Store	591	SRF, 1-cell	IR-10	17	2	379
Rapid Cycling Synchrotron (RCS)	Accel / Store	591	SRF, 5-cell	IR-10	3	1	70
	Harmonic Kickers	591	NCRF, QWR, 1-mode NCRF, QWR, 2-mode	IR-2 or IR-12	1 1	1	1.2 3.8
	Bunch Merge Type 1	295	NCRF, Reentrant	IR-4	2	1	70
	Bunch Merge Type 2	148	NCRF, Reentrant	IR-4	1	1	70
Hadron Storage Ring	Capture / Accel	24.6	NCRF, QWR	IR-4	4	1	100
	Bunch Split 1	49.2	NCRF, QWR	IR-4	2	1	200
	Bunch Split 2	98.5	NCRF, QWR	IR-4	2	1	200
	Store 1	197	NCRF, Reentrant	IR-4	7	1	100
	Store 2	591	SRF, 1- or 2-cell	IR-10	5 or 3	1	60
Strong Hadron Cooling ERL Design remains very fluid	ERL Injector	197 591	SRF, QWR SRF, 1-cell	IR-2	2 1	2 1	200 10
	ERL Low Energy Linac	197 591	SRF, QWR SRF, 1-cell	IR-2	4 2	2 1	200 10
	ERL Fundamental	591	SRF, 5-cell	IR-2	10	1	60
	ERL Third Harmonic	1773	SRF, 5-cell	IR-2	4 (1 CM)	1	5
Crab Cavities	Hadron	197	SRF, RFD	IR-6	8 (4 CM)	1	70
	Hadron/Electron	394	SRF, RFD	IR-6	6	1	50
A Marken all	annual and a summer	SR	F 2023 June 26 – 30, 2023		Ele	ectron-lon	Collider

FPC list for ERIC RF/SRF cavities

RF System	Sub System	Freq [MHz]	Туре	Location	# Cavities	# FPC/cavity	FPC power (kW)
Electron Storage Ring	Accel / Store	591	SRF, 1-cell	IR-10	17	2	379
Rapid Cycling Synchrotron	Accel / Store	591	SRF, 5-cell	IR-10	3	1	70

- EIC FPC summary:
 - More than 90 new FPCs are required for EIC RF/SRF systems.
 - Most EIC cavities' frequencies are below ESR SRF cavity's frequency, 591 MHz.
 - Only the SHC ERL 3rd harmonic cavity has higher frequency, 1773 MHz.
 - The most challenging FPC is for ESR SRF cavity coupler: CW 400 kW.
- EIC FPC strategy:
 - Develop a single broadband window for SRF cavities with frequency < 591 MHz
 - New design presented here
 - Adopt CEBAR window for 1773 MHz
 - Use a single RF window for NCRF cavities (loop coupling)

	ERL Fundamental	591	SRF, 5-cell	IR-2	10	1	60
	ERL Third Harmonic	1773	SRF, 5-cell	IR-2	4 (1 CM)	1	5
Crab Cavities	Hadron	197	SRF, RFD	IR-6	8 (4 CM)	1	70
	Hadron/Electron	394	SRF, RFD	IR-6	6	1	50
and the second	Mining .	SRF 2023. June 26 – 30. 2023			Electron-Ion Collider		

FPC for EIC ESR SRF Cavity

- EIC eSR FPC design is the next generation evolving KEKB/ Tristan/SNS/BNL BeO high power window design
- Al₂O₃ window FPC based on lesson learned from in-house experiences on BeO window FPC.
 - Replace BeO window with 99.5% Al₂O₃ for safety and maintenance considerations.
 - 99.5% Al₂O₃ has similar dielectric losses and thermal conductivity to BeO but has better mechanical strength than BeO.
 - Increase choke to window distance for better TiN coating and inspection.
 - Optimized coaxial line to increase power handling and coupling with cavity.
 - Larger ceramic ID to survive 5 g shock load in any direction.
 - Improve FPC cooling channel design.
 - Improve instrumentations on FPC.
 - 4.5 kV bias will be ready to apply.

High power broadband window for EIC Cavities

- A high power, broadband window has been designed for EIC RF/SRF cavities.
 - Broadband: < -40 dB for frequency below 591 MHz.
 - The peak field at the braze-joint is 367 kV/m (@2MW).
- Mechanically, the window design satisfies transportation and cryomodule requirement.

	Requirement	FPC Design
Average RF	379 kW	1 MW, traveling wave
power		500 kW, full reflection
Peak Power	1.5 MW, equivalent	2 MW, equivalent
Frequency	591 MHz	Broadband window design,
		for EIC cavities below 591 MHz
Shock load	5g	5g,
Modal frequency	> 60 Hz	100 Hz
IC length	289 mm	425 mm

SRF 2023, June 26 – 30, 2023

Window cooling and thermal analysis

- Water cooling for inner conductor and window.
- RF thermal simulation
 - 1 MW power input
 - Conservative thermal film coefficient
- Highest temperature of 40 C is at uncooled flanges.
- Choke tip highest temperature is 34 C.
- Al₂O₃ temperature ranges from 24 C to 34 C

D: Steady-State Thermal, Hand Conv.

Temperature

Time: 1

Type: Temperature Unit: °C

40.1 Max 38.1

36.1 34.2

32.2

30.2 28.2 26.2 24.2

TiN coating study (1)

- TiN coating will be coated on ceramic vacuum side only.
- TiN coating study
 - TiN coating on a window mockup structure.
 - Coated by two vendors
 - Measure SEY
 - Measure species on the TiN coating
 - Measure TiN coating thickness

Electron-Ion Collider

TEM analysis on TiN coating

- TiN coating analysis by BNL Center for Functional Nanomaterials (CFN) with transmission electron microscopy (TEM)
- Similar TiN coating thickness from two vendors
- Both vendor got Ti_xNi_yO_z, but with different composition.

TiN coating SEY measurement

- Three samples sent to KEK for SEY measurement
 - BNL#1 and BNL#2 were coated by vendors
 - BNL #3 was bare AI_2O_3
- Both vendors' SEY results are close to each other.

Comparison of Secondary Electron Emission Coefficient on BNL samples

Multipacting simulation

- Multipacting analyzed with SPARK3D
- Conservative (worse than the measurement results) SEY curve was used for multipacting simulation.
- Multipacting simulation shows that multipacting will be fully suppressed (even no TiN coating on ceramic) with 4.5 kV DC bias applied.
- However, TiN will be coated on the ceramic's vacuum side .

SEY curve

• FPC test will start without bias.

RF Window prequalification

- Eventually, high power RF conditioning is the necessary step to qualify a RF window, prior to installing on a cryomodule.
- However, we are working on developing a systemic testing procedure to prequalify a high-power RF window.
 - Material certification + independent coupon test
 - Visual inspection
 - Vacuum leak check
 - Water leak/pressure test
 - DC resistance measurement on TiN coating
 - RF measurement on a window

Photo from Christian Arcambal at ESS

High normalized FPCs

- As one of the most dedicate points in the cryomodule, the FPC has its only challenge for each SRF system
- However, from normalized power point of view, EIC eSR SRF cavity's FPC remains the most challenging FPC in the world.
 - Normalized FPC power:

 $P[kW] \times \sqrt{f[MHz]/500}$

- FPCs are one of most challenging items in EIC RF/SRF system
- Recent developments on the broadband, high power FPC window for EIC was reported.
- EIC prototype testing in Sept. 2024!

Acknowledgements

• BNL : J. Fite, K. Smith, B. Xiao, D. Holmes, A. Zaltsman, Z. Conway, S. Andres-Verdu, Q. Wu and many others

Electron-Ion Collider

- BNL CFN: Changyong Nam, Kissinger Kim
- JLAB : E Daly, J. Guo, J. Henry, J. Matalevich, R. Rimmer, and many others
- KEK: Kirk Yamamoto, E. Kako
- CERN : E. Montesinos
- FNAL: S. Belomestnykh
- SNS: J. Mammosser (ORNL)
- IHEP: Tongming Huang
- ESS: Christian Arcambal
- Many others....