

Development of 3.9 GHz 9-cell cavities at SHINE

Xiaowei Wu on behalf of SHINE 3.9 GHz working group 30 June, 2023

Outline

- Introduction to SHINE and 3.9 GHz cavity
- Design of SHINE 3.9 GHz 9-cell cavity
- Fabrication of the 3.9 GHz prototypes
- Test the 3.9 GHz prototype
- Summary

Introduction to SHINE

- SHINE: Shanghai High repetitioN rate XFEL and Extreme light facility
- Launched in April 2017, groundbreaking in April 2018, aiming at the first light in 2025

Introduction to SHINE

• SHINE is a CW machine which consists of 75 CMs of 1.3 GHz cavities and 2 CMs of 3.9 GHz cavities

• 3 km tunnel with 1.5 km Linac

Linac parameters	Value		
Cavity	1.3 GHz Tesla	3.9 GHz SHINE	
Operating mode	CW		
Frequency [MHz]	1300	3900	
Eacc [MV/m]	16.0	13.1	
Q0	2.7×10^{10}	2.0×10 ⁹	
Number of cavity	600	16	

MOIXA01

Jinfang Chen et al.

3.9 GHz cyromodule in SHINE

Two 3.9 GHz CMs are required in SHINE

- 8 cavities per CM
- In L2 before BC1

Cavities in front of BC1 are decisive to the beam performance

- Uniformly compressed cluster increases beam peak current
- 3.9 GHz CMs linearizes longitudinal phase space of electron beam

Timeline of 3.9 GHz study at SHINE

Two prototypes + Two batches of cavities (16 cavities for 2 CMs)

Outline

- Introduction to SHINE and 3.9 GHz cavity
- Design of SHINE 3.9 GHz 9-cell cavity
- Fabrication of the 3.9 GHz prototypes
- Test the 3.9 GHz prototype
- Summary

S

HINE

SHINE 3.9 GHz cavity design

3.9 GHz Cavity Design

- Optimize end cell and the pipe size
- Frequency difference between the lowest dipole mode and fundamental mode is increased to 265 MHz
- Middle cell has the same design as EXFEL and LCLS-II
- Reduce power loss on HOM antenna

Technical Specifications

- Q₀ > 2.0e9 @ E_{acc} = 13.1 MV/m
- Max E_{acc} ≥ 16.5 MV/m
- HOM Q_e < 1e6 for high R/Q modes (HOM suppression)
- Field flatness> 95%
- Eccentricity < 0.4 mm

3.9 GHz cavity design

- Mechanical design of bare and dressed cavity
- Chimney design ($\Phi 56.3 \rightarrow 76$ mm) for dressed cavity
- Inner and external magnetic shield

3.9 GHz bare cavity

3.9 GHz dressed cavity

Outline

- Introduction to SHINE and 3.9 GHz cavity
- Design of SHINE 3.9 GHz 9-cell cavity
- Fabrication of the 3.9 GHz prototypes
- Test the 3.9 GHz prototype
- Summary

S

HINE

Fabrication of the prototypes

- Two prototypes were fabricated by domestic company (OSTEC)
- Materials provided by OSTEC, NX
- Followed by the standard fabrication procedures

Fabrication procedures

F

Prototype components

Fabrication of the prototypes

- Two prototypes were fabricated in 2022 and 2023
- Frequency/length met the goal
- Field flatness is good after fabrication

Parameters after fabrication

	#01	#02	Goal
Length	508.8	509.5	506.0 ± 4
Freq [MHz]	3903.0	3902.8	3898.5±5
Eccentricity [mm]	1.0	0.46	<1.0
Field Flatness [%]	89.0	86.6	>50

*Measured in room temp and air

INE

#01 at OSTEC

#01 field distribution after fabrication

Surface treatment of #01

- Surface treatment was conducted at SHINE facility at Wuxi Creative
- BCP and heat treatment
 - 120 μm heavy BCP + 900°C + 20 μm light BCP
 - SHINE BCP process
- Smooth and bright, no obvious defects

Equator before BCP

Equator after BCP

Heat treatment

[1] Pierini, P., et al. *Physical Review Accelerators and Beams* 20.4 (2017): 042006.

Borescope system

- The iris size (15 mm) of 3.9 GHz cavity is smaller than that of 1.3 GHz cavity
 - Kyoto camera could be used for 3.9 GHz cavity directly
- A self-made borescope system was developed
 - movable support
 - insertion probe
 - macro camera module
- Good results achieved by the borescope system

Equator of #01 after BCP

Borescope system

Dimensional check and tuning

- Mechanical measurement and tuning were conducted
- Frequency, length, field flatness met the goal at same time

Quantity at room temperature	Goal	Measured
Length [mm]	505.98	506.18
Eccentricity [mm]	< 1.0	Satisfied
Field flatness [%]	> 95	95.9
Frequency [MHz]	3893.0	3893.1

**Eccentricity has been improved by lip-weld geometry in #02

0

*Measured in room temp and vacuum

Eccentricity of #01

Tuning of #01

#01 field distribution after tuning

2-step low temperature baking

- 2-step low-T baking (75/120°C) was conducted after the first vertical test
 - 75°C (4 hours) +120°C (48 hours)
- Temperature of the bottom part was low and not uniform→ will be improved soon

2-step low temperature baking layout

SHINE

[1] A Grassellino, et al. arXiv preprint arXiv:1806.09824, 2018

Outline

- Introduction to SHINE and 3.9 GHz cavity
- Design of SHINE 3.9 GHz 9-cell cavity
- Fabrication of the 3.9 GHz prototypes
- Test the 3.9 GHz prototype
- Summary

HINE

S

Rf spectrum of #01

SHINE

- Rf measurements performed at SHINE facility at Shanghai
- 3983.1 MHz→3899.5 MHz in vertical test
- First dipole mode ~260 MHz away from fundamental mode

Vertical test results of #01 bare cavity

- Q0 = <u>3.5 × 10⁹</u>@13.1 MV/m
- Max Eacc = <u>24.0 MV/m</u>, FE free
- Excellent performance at 2 K

SHINE

Quantity at 2 K	Goal	VT-NoBaking	VT-Baking
Nominal Gradient [MV/m]	13.1	Achieved	
Q0@13.1 MV/m	2.0×10^{9}	$3.1 imes 10^9$	3.48×10^9
Max Eacc [MV/m]	> 16.5	24.0	25.0
Frequency [MHz]	3899.4	3899	9.5

Xiaowei Wu, Development of 3.9 GHz 9-cell cavities at SHINE, Grand Rapids, USA, SRF2023

Ø

Integration of #01 cavity

- TIG welding for helium tank integration
- Inner magnetic shield was installed on #01 bare cavity
- Frequency controlled during the integration
- Helium tank pressure test performed

Helium tank components

#01 during integration

Vertical test of #01 dressed cavity

- Q0 = <u>2.9 × 10⁹</u>@13.1 MV/m
- Max Eacc = <u>20.3 MV/m</u>
- FE observed from 19.0 MV/m
- #01 now under HPR and will be re-VT

#01 dressed cavity under rf measurement

Quantity at 2 K	Goal	Bare cavity	Dressed cavity
Nominal Gradient [MV/m]	13.1	Achieved	
Q0@13.1 MV/m	2.0×10^{9}	3.48×10^{9}	$2.9 imes 10^9$
Max Eacc [MV/m]	> 16.5	25.0	20.3

Compare with 3.9 GHz cavities worldwide

- Bare cavity is as good as LCLS-II and EXFEL
- Low T baking and Helium tank integration will be improved

Horizontal test of #01

• The horizontal test will be conducted in a small cryostat with another 1.3 GHz 9-cell cavity

#01 with blade tuner

SHINE

#01 in small cryostat

Mass production of the first batch

- The first batch production started from beginning of 2023
- Components ready for welding
- First 3.9 GHz cryomodule expected in 2024

Dumbbells of the first batch

Components of the first batch

Summary

First 3.9 GHz 9-cell prototype has been fabricated, treated, and verified

- Gained experience, technology, and tools
- Excellent performance in vertical test (900°C + 2-step low-T baking)
- Horizontal test in a small cryostat soon
- Second 3.9 GHz 9-cell prototype is under treatment
 - Vertical test around Aug 2023
 - First batch of 3.9 GHz cavities is under fabrication
 - Domestic batch of 10 cavities
 - First cryomodule around 2024
 - Potential batch for a spare module

#01

#02

First batch

Acknowledgments

Thanks to SHINE 3.9 GHz working group for the efforts on the development of 3.9 GHz cavities

Collaboration of several institutes

- J.F. Chen, P.C. Dong, S.J. Zhao, X.H. Ouyang, Y.F. Liu, S. Sun, Y.L. Zhao, Y.X. Zhang, S. Xing, J.N. Wu from SARI, CAS
- Z. Wang, X, Huang, Y. Zong from SINAP, CAS
- R.Z. Xia, Y.W. Huang from Shanghai Tech University

Many thanks to the people of SHINE SRF cryomodule team

Thanks for the help from INFN-LASA

Thanks for your attention!

