

COMPLETION OF TESTING SERIES DOUBLE-SPOKE CAVITY CRYOMODULES FOR ESS

Rocío Santiago Kern

on behalf of the FREIA team

Laboratoire de Physique des 2 Infinis

Overview

- The FREIA Team
- The ESS double-spoke cryomodules
- Cryomodules' Journey
- Challenges in Cryomodule Testing
- Measurements
 - Standard Testing Schedule per Cryomodule
 - Series Cryomodule Testing Qualification Overview
 - Warm RF coupler conditioning
 - Cryomodules' cooling
 - Cryomodules' Heat loads and Q₀
 - Field Emission
 - Risk of quench and protection
 - Cold tuning system and Lorentz-force Detuning
- Lessons learned
- Future prospects

The FREIA Team

International experts from different fields

The European Spallation Source

ESS double-spoke Cavity Cryomodule Parameters

Operation parameters

- 90 MeV → 216 MeV
- Peak current 62.5 mA
- Bunch length 2.86 ms
- RF pulse length 3.2 ms
- Repetition rate 14 Hz
- RF duty cycle 4.5 %
- Temperature 2 K
- Max RF power 335 kW

parameter	value
f [MHz]	352.210
β_{opt}	0.50
E _{acc} [MV/m]	9.0
$B_{pk}/E_{acc}(B_{pk})$	6.8 (61 mT)
E_{pk}/E_{acc} (E_{pk})	4.3 (38 MV/m)
G [Ω]	133
R/Q [Ω]	427
L _{acc} [m]	0.639
Q _{ext}	1.75-2.85e5
BW [kHz]	1.2-2.0
Q_{0}	>1.5e9

CM= x2 double-spoke cav

(x13+1)

ESS double-spoke Cavity Cryomodule Parameters

Operation parameters

- 90 MeV → 216 MeV
- Peak current 62.5 mA
- Bunch length 2.86 ms
- RF pulse length 3.2 ms
- Repetition rate 14 Hz
- RF duty cycle 4.5 %
- Temperature 2 K
- Max RF power 335 kW

parameter	value	
f [MHz]	352.210	
β_{opt}	0.50	
E _{acc} [MV/m]	9.0	
B_{pk}/E_{acc} (B_{pk})	6.8 (61 mT)	
$E_{pk}/E_{acc}(E_{pk})$	4.3 (38 MV/m)	
G [Ω]	133	
R/Q [Ω]	427	
L _{acc} [m]	0.639	
Q _{ext}	1.75-2.85e5	
BW [kHz]	1.2-2.0	
Q_{o}	>1.5e9	

CM= x2 double-spoke cav

(x13+1)

Cryomodules' Journey

Cryomodule Assembly at Orsay

2 000 km

FREIA is leading **low-β cryomodule** assessment in Europe

Standard Testing Schedule per Cryomodule

week	1st week													
d au i	М	ON	T	UE	И	VED	7	ΉU		FRI	SAT	SUN		
uuy	m	а	m	а	т	а	m	а	т	а				
activity	departi Or	ure from say		tran	isport		rece	ption	recep	tion test				
week						2st w	eek							
day	М	ON	T	UE	V	VED	7	ΉU		FRI	SAT	SUN		
	m	а	m	а	m	а	m	а	т	а				
activity	doorknob	mounting	installed	in bunker	cryogenic	connection	vacuum o	connection	RF calil w	bration at arm	pur	nping		
week						3rd w	eek							
dau	М	ON	T	UE	И	VED	7	ΉU		FRI	SAT	SUN		
aay	т	а	m	а	т	а	т	а	т	а				
activity	coupler warm conditioning LN shield cool							d cooling						
week	4th week													
	М	ON	T	UE	И	VED	THU		THU		FRI		SAT	SUN
uuy	т	а	т	а	т	а	т	а	т	а				
activity	cooling a	lown to 4K	4 K filling	thermaliz ation	2K pumping		multi	pacting	CTS tost					
uctivity	f vs T mee	asurement	couple condit	er cold tioning	f vs p	calibration at cold	condi	tioning	CIStest					
week						5th w	eek							
dau	М	ON	T	UE	И	VED	7	ΉU		FRI	SAT	SUN		
uuy	m	а	т	а	т	а	т	а	т	а				
activity	hea measu	heat load measurement		rming up		warming up			warn com	ning up pleted				
week						6th w	reek							
day	М	ON	T	UE	И	VED	7	ΉU	FRI		SAT	SUN		
uuy	m	а	m	а	m	а	m	а	т	а				
activity	out from	n bunker	dism doorkno	ount b, dry N2	out going test		departure		arriva	al at ESS				

Legend							
Mechanical work							
RF coupler conditioning							
Cold test							

Standard Testing Schedule per Cryomodule

week	1st week											
day	M	ION	T	UE	И	/ED	TI	THU FRI SAT			SUN	
uuy	т	а	т	а	т	а	т	а	т	а		
activity	depart Oi	ure from rsay		tran	sport		rece	ption	recept	ion test		
week						2st w	eek					
day	M	ION	T	UE	И	VED	TI	HU	F	RI	SAT	SUN
	т	а	т	а	т	а	т	а	т	а		
activity	doorknot	mounting	installed	in bunker	cryogenic	connection	vacuum c	onnection	RF calib wa	ration at arm	pum	ping
week						3rd w	reek					
	M	ON	T	UE	И	/ED	TI	HU	F	RI	SAT	SUN
aay	m	а	m	а	т	а	m	а	т	а		
activity			со	upler warr	m conditio	ning	-			LN shiel	d cooling	
week						4th w	eek					
dau	M	ON	T	UE	И	/ED	TI	THU FRI		RI	SAT	SUN
uuy	m	а	т	а	т	а	т	а	т	а		
activity	cooling c	cooling down to 4K 4		ing thermaliz 2K ation pumping		multiț	pacting	CTS test				
uctivity	f vs T me	asurement	couple condit	er cold tioning	f vs p	calibration at cold	condit	tioning				
week						5th w	reek					
day	M	ION	T	UE	И	/ED	TI	HU	F	RI	SAT	SUN
uuy	m	а	m	а	т	а	m	а	т	а		
activity	hea measu	t load ırement	start wa	rt warming up warming up		warm comp	ing up oleted					
week						6th w	reek					
dau	M	ION	T	UE	И	/ED	TI	HU	FRI		SAT	SUN
udy	m	а	m	а	т	а	m	а	m	а		
activity	out from	m bunker	dism doorkno	ount b. drv N2	out go	oing test	departure arrival at ESS					

Legend								
Mechanical work								
RF coupler conditioning								
Cold test								

Main part of the test takes 4 weeks

Inevitable 18 days

- Beam Vacuum Pumping: 3 days
- Coupler conditioning 24h x 3-4 days
- Thermalization 7 days for CTS
- Warming up 4 days

Mechanical work takes more than 1 week but **overlapping** with other modules helps

13 CMs tested

8 CMs qualified in 1st round

 13 CMs tested
 8 CMs qualified in 1st round

 5 CMs disqualified on 1st round

 \Rightarrow Under investigation by IJClab and the vendor

 \Rightarrow Under investigation by IJClab and the vendor

Pre-conditioned in pairs at IJCLab

Travelling wave up to 400 kW **Standing wave** up to 170 kW

Travelling wave up to 400 kW **Standing wave** up to 170 kW

cryomodule (off resonance $\Delta f \gg BW$)

Travelling wave up to 400 kW **Standing wave** up to 170 kW

cryomodule (off resonance $\Delta f \gg BW$)

Travelling wave up to 400 kW **Standing wave** up to 170 kW

Outcome

- Outgassing in CM is mainly below 100 kW (multipacting barrier MP)
 - Spatial distribution of RF is different from the configuration in CM
- In CMs, 24h x 3-4 days up to duty cycle 4.5% to completely clean the MP bands
- Reliability of the RF system during this time is crucial

Standing wave up to 400 kW in a cryomodule (off resonance $\Delta f \gg BW$)

CM #	FPC1	FPC2	# of pumps	hours
CM02	CPL01	CPL04	1	112
CM04	CPL11	CPL03	1	67
CM02	CPL01	CPL04	2	9
CM05	CPL14	CPL18	2	66
CM03	CPL06	CPL26	1	109
CM01	CPL10	CPL12	2	90
CM04	CPL32	CPL05	2	147
CM03	CPL06	CPL26	2	12
CM06	CPL11	CPL20	2	66
CM07	CPL25	CPL30	2	48
CM08	CPL21	CPL15	2	65
CM09	CPL27	CPL28	2	30
CM10	CPL23	CPL24	2	10
CM11	CPL22	CPL19	2	26
CM12	CPL03	CPL09	2	92
CM10	CPL23	CPL24	2	9
CM09	CPL16	CPL17	2	67
CM13	CPL27	CPL28	2	100

• Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced

CM #	FPC1	FPC2	# of pumps	hours	
CM02	CPL01	CPL04	1	112	
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	
CM01	CPL10	CPL12	2	90	
CM04	CPL32	CPL05	2	147	
CM03	CPL06	CPL26	2	12	
CM06	CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	CPL27	CPL28	2	100	

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak

	CM #	FPC1	FPC2	# of pumps	hours	
	CM02	CPL01	CPL04	1	112	
	CM04	CPL11	CPL03	1	67	
	CM02	CPL01	CPL04	2	9	
	CM05	CPL14	CPL18	2	66	
	CM03	CPL06	CPL26	1	109	
	CM01	CPL10	CPL12	2	90	
	CM04	CPL32	CPL05	2	147	
	CM03	CPL06	CPL26	2	12	
	CM06	CPL11	CPL20	2	66	
	CM07	CPL25	CPL30	2	48	
	CM08	CPL21	CPL15	2	65	
	CM09	CPL27	CPL28	2	30	
	CM10	CPL23	CPL24	2	10	
_	CM11	CPL22	CPL19	2	26	
	CM12	CPL03	CPL09	2	92	
	CM10	CPL23	CPL24	2	9	
	CM09	CPL16	CPL17	2	67	
	CM13	CPL27	CPL28	2	100	

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak

CM #	FPC1	FPC2	# of pumps	hours	
CM02	CPL01	CPL04	1	112	pumping station was close
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	
CM01	CPL10	CPL12	2	90	
CM04	CPL32	CPL05	2	147	
CM03	CPL06	CPL26	2	12	
CM06	CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	CPL27	CPL28	2	100	

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak

CM #	FPC1	FPC2	# of pumps	hours	
CM02	CPL01	CPL04	1	112	pumping station was closed
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	→ Only one pumping station
CM01	CPL10	CPL12	2	90	was connected
CM04	CPL32	CPL05	2	147	
CM03	CPL06	CPL26	2	12	
CM06	CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	CPL27	CPL28	2	100	

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak

CM #	FPC1	FPC2	# of pumps	hours	
CM02	CPL01	CPL04	1	112	pumping station was closed
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	→ Only one pumping station
CM01	CPL10	CPL12	2	90	was connected
CM04	CPL32	CPL05	2	147	→ Only one RF station was
CM03	CPL06	CPL26	2	12	connected
CM06	CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	CPL27	CPL28	2	100	

Warm RF coupler conditioning (cont'd)

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak
- There is a big variation in conditioning time: from 10 h to 100 h, even under the same conditions

CM #	FPC1	FPC2	# of pumps	hours	TT1 (1 ((1
CM02	CPL01	CPL04	1	112	pumping station was closed
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	→ Only one pumping station
CM01	CPL10	CPL12	2	90	was connected
CM04	CPL32	CPL05	2	147	→ Only one RF station was
CM03	CPL06	CPL26	2	12	connected
CM06	CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	CPL27	CPL28	2	100	

Warm RF coupler conditioning (cont'd)

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak
- There is a big variation in conditioning time: from 10 h to 100 h, even under the same conditions
- More active pumping during assembly might reduce the necessary conditioning time

CM #	FPC1	FPC2	# of pumps	hours	
CM02	CPL01	CPL04	1	112	pumping station was closed
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	5 CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	→ Only one pumping station
CM01	CPL10	CPL12	2	90	was connected
CM04	CPL32	CPL05	2	147	→ Only one RF station was
CM03	CPL06	CPL26	2	12	connected
CM06	6 CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	3 CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	G CPL27	CPL28	2	100	

Warm RF coupler conditioning (cont'd)

- Some couplers were conditioned twice without being exposed to air when broken stepper motors were replaced
- Some couplers were repaired & recycled from disqualified cavity strings due to a vacuum leak
- There is a big variation in conditioning time: from 10 h to 100 h, even under the same conditions
- More active pumping during assembly might reduce the necessary conditioning time
- RGA sometimes observed CH and oxygen have a negative correlation

CM #	FPC1	FPC2	# of pumps	hours	TT1 (1 ()1
CM02	CPL01	CPL04	1	112	pumping station was closed
CM04	CPL11	CPL03	1	67	
CM02	CPL01	CPL04	2	9	
CM05	CPL14	CPL18	2	66	
CM03	CPL06	CPL26	1	109	→ Only one pumping station
CM01	CPL10	CPL12	2	90	was connected
CM04	CPL32	CPL05	2	147	→ Only one RF station was
CM03	CPL06	CPL26	2	12	connected
CM06	CPL11	CPL20	2	66	
CM07	CPL25	CPL30	2	48	
CM08	CPL21	CPL15	2	65	
CM09	CPL27	CPL28	2	30	
CM10	CPL23	CPL24	2	10	
CM11	CPL22	CPL19	2	26	
CM12	CPL03	CPL09	2	92	
CM10	CPL23	CPL24	2	9	
CM09	CPL16	CPL17	2	67	
CM13	CPL27	CPL28	2	100	

• Thermal shields cooled with <u>LN2</u> (24 h min)

- Thermal shields cooled with <u>LN2</u> (24 h min)
- Thermalization times are very important for when cooling with LHe
 - Shorter cooling times, so
 - Less LHe spent during cooldown

- Thermal shields cooled with <u>LN2</u> (24 h min)
- Thermalization times are very important for when cooling with LHe
 - Shorter cooling times, so
 - Less LHe spent during cooldown
- Cooling rates above 1 K/min

- Thermal shields cooled with <u>LN2</u> (24 h min)
- Thermalization times are very important for when cooling with LHe
 - Shorter cooling times, so
 - Less LHe spent during cooldown
- Cooling rates above 1 K/min

- Thermal shields cooled with <u>LN2</u> (24 h min)
- Thermalization times are very important for when cooling with LHe
 - Shorter cooling times, so
 - Less LHe spent during cooldown
- Cooling rates above 1 K/min
 - To avoid potential Q-disease but
 - Thermal contraction slow

- Thermal shields cooled with LN2 (24 h min) ٠
- Thermalization times are very important for when cooling with LHe ٠
 - Shorter cooling times, so
 - Less LHe spent during cooldown
- Cooling rates above 1 K/min ٠
 - To avoid potential Q-disease but
 - Thermal contraction slow

no flux expulsion required for these spoke cavities

MI

- Thermal shields cooled with <u>LN2</u> (24 h min)
- Thermalization times are very important for when cooling with LHe
 - Shorter cooling times, so
 - Less LHe spent during cooldown
- Cooling rates above 1 K/min
 - To avoid potential Q-disease but
 - Thermal contraction slow

wide spread BUT no individual difference among modules and no problem for normal operation

With both cavities at 9 MV/m

With both cavities at 9 MV/m

HLs measured with a volumetric flowmeter at T room and P atm

With both cavities at 9 MV/m

HLs measured with a volumetric flowmeter at T room and P atm

HLs measured with a volumetric flowmeter at T room and P atm

NV

- The static heat load
 - Influenced by Thermo Acoustic Oscillation (TAO) \rightarrow valve configuration changed \rightarrow impact in flow
 - Higher than dynamic \rightarrow due to the system being in a different thermalization state (??)
 - Dominates the cryogenic loss
- The RF power dissipation is within error bars, compared to static heat load

- The static heat load
 - Influenced by Thermo Acoustic Oscillation (TAO) \rightarrow valve configuration changed \rightarrow impact in flow
 - Higher than dynamic \rightarrow due to the system being in a different thermalization state (??)
 - Dominates the cryogenic loss
- The RF power dissipation is within error bars, compared to static heat load

- The static heat load
 - Influenced by Thermo Acoustic Oscillation (TAO) \rightarrow valve configuration changed \rightarrow impact in flow
 - Higher than dynamic \rightarrow due to the system being in a different thermalization state (??)
 - Dominates the cryogenic loss
- The RF power dissipation is within error bars, compared to static heat load
- Good cavity performance → RF power dissipation in pulsed operation < than the resolution of evaporation method in the CM

- The static heat load
 - Influenced by Thermo Acoustic Oscillation (TAO) \rightarrow valve configuration changed \rightarrow impact in flow
 - Higher than dynamic \rightarrow due to the system being in a different thermalization state (??)
 - Dominates the cryogenic loss
- The RF power dissipation is within error bars, compared to static heat load
- Good cavity performance → RF power dissipation in pulsed operation < than the resolution of evaporation method in the CM

Thermal screens LN2 cooling \rightarrow 50 K at ESS \rightarrow improvement of static heat load is higly expected

No significant cavity degradation after the vertical tests

Field Emission

Field Emission

- No HPR after VT and before CM assembly \rightarrow challenging objective for IJCLab
 - except 06 and 23 (not re-tested afterwards)
- Field emission (X-ray) was not clearly observed in some CMs up to the administrative limit
- No major degradation was observed

Field Emission

- No HPR after VT and before CM assembly \rightarrow challenging objective for IJCLab
 - except 06 and 23 (not re-tested afterwards)
- Field emission (X-ray) was not clearly observed in some CMs up to the administrative limit
- No major degradation was observed

All cavities reached the nominal gradient 9 MV/m

IJCLab's method proved succesful

Risk of Quench and Protection

- Multipacting is a major challenge in spoke cavities
- Quench at low fields (< 1MV/m) is possible \rightarrow trigger "global" quench \rightarrow problem for ESS
- Need to stop RF powering in case of "local" quench
- Quench detection and interlock strategy were crucial
 - fast interlock at low field BEFORE the first powering
 - pressure interlock
 - quench detection system via on-line evaluation of decay constant with FPGA

• All cavities reached target frequency within specifications

- All cavities reached target frequency within specifications
- Piezo range from -40 V to 200 V

- All cavities reached target frequency within specifications
- Piezo range from -40 V to 200 V
- Piezo range is enough to compensate for LFD
- Note: active compensation tested only in 1st series module (LLRF not ready at the time)

- All cavities reached target frequency within specifications
- Piezo range from -40 V to 200 V
- Piezo range is enough to compensate for LFD
- Note: active compensation tested only in 1st series module (LLRF not ready at the time)

Need to stress test prototype motor and min one of the series

• FREIA has tested series cryomodules for 2 ½ years competence and expertise acquired

• FREIA has tested series cryomodules for 2 ½ years competence and expertise acquired

- Main Points
 - He recovery capacity: increased mid testing (not a bottleneck)
 - Heat load measurement: add new flowmeter with a lower range in parallel
 - FPC cooling: add ScHe circuit
 - RF stations
 - Failures with tetrodes, power supplies and amplifiers \rightarrow problems with schedule
 - Careful optimisation of operation parameters, risk analysis and availability of spare parts

• FREIA has tested series cryomodules for 2 ½ years competence and expertise acquired

- Main Points
 - He recovery capacity: increased mid testing (not a bottleneck)
 - Heat load measurement: add new flowmeter with a lower range in parallel
 - FPC cooling: add ScHe circuit
 - RF stations
 - Failures with tetrodes, power supplies and amplifiers \rightarrow problems with schedule
 - Careful optimisation of operation parameters, risk analysis and availability of spare parts

• FREIA has tested series cryomodules for 2 ½ years competence and expertise acquired

- Main Points
 - He recovery capacity: increased mid testing (not a bottleneck)
 - Heat load measurement: add new flowmeter with a lower range in parallel
 - FPC cooling: add ScHe circuit
 - RF stations
 - Failures with tetrodes, power supplies and amplifiers \rightarrow problems with schedule
 - Careful optimisation of operation parameters, risk analysis and availability of spare parts
 - In day-to-day activities
 - Good planning and overview, and
 - Good understanding of what processes or activities can be done or prepared in parallel

• FREIA has tested series cryomodules for 2 ½ years competence and expertise acquired

- Main Points
 - He recovery capacity: increased mid testing (not a bottleneck)
 - Heat load measurement: add new flowmeter with a lower range in parallel
 - FPC cooling: add ScHe circuit
 - RF stations
 - Failures with tetrodes, power supplies and amplifiers \rightarrow problems with schedule
 - Careful optimisation of operation parameters, risk analysis and availability of spare parts
 - In day-to-day activities
 - Good planning and overview, and
 - Good understanding of what processes or activities can be done or prepared in parallel

• Testing of a canted-cosine Theta (CCT) superconducting magnet \rightarrow Fall 2023

- Testing of a canted-cosine Theta (CCT) superconducting magnet \rightarrow Fall 2023
- Testing of a low temperature superconducting magnet for the iFAST Project \rightarrow 2024

- Testing of a canted-cosine Theta (CCT) superconducting magnet \rightarrow Fall 2023
- Testing of a low temperature superconducting magnet for the iFAST Project \rightarrow 2024
- Testing of a superconducting magnet for Hitri+ \rightarrow 2025

- Testing of a canted-cosine Theta (CCT) superconducting magnet \rightarrow Fall 2023
- Testing of a low temperature superconducting magnet for the iFAST Project \rightarrow 2024
- Testing of a superconducting magnet for Hitri+ \rightarrow 2025
- FREIA is under discussion with SCK-CEN to work on the MYRRHA project testing
 - Single spoke cavities (x60)
 - Single spoke cavity cryomodules (x30)

Future Prospects

- Testing of a canted-cosine Theta (CCT) superconducting magnet \rightarrow Fall 2023
- Testing of a low temperature superconducting magnet for the iFAST Project \rightarrow 2024
- Testing of a superconducting magnet for Hitri+ \rightarrow 2025
- FREIA is under discussion with SCK-CEN to work on the MYRRHA project testing
 - Single spoke cavities (x60)
 - Single spoke cavity cryomodules (x30)

Logistics will be very important

Future Prospects

- Testing of a canted-cosine Theta (CCT) superconducting magnet \rightarrow Fall 2023
- Testing of a low temperature superconducting magnet for the iFAST Project \rightarrow 2024
- Testing of a superconducting magnet for Hitri+ \rightarrow 2025
- FREIA is under discussion with SCK-CEN to work on the MYRRHA project testing
 - Single spoke cavities (x60)
 - Single spoke cavity cryomodules (x30)

Logistics will be very important

FREIA has the expertise for series testing

Thank you for listening

And also thanks to:

- FREIA team for all the hard work
- IJClab' and ESS' colleagues for fruitful discussions
- The SRF23 organizers for the opportunity to give this talk