

Laboratoire de Physique des 2 Infinis

UNIVERSITE PARIS-SACLAY

Performance Analysis of Spoke Resonators, Statistics from Cavity Fabrication to Cryomodule Testing

CNRS/IN2P3/IJCLab Université Paris-Saclay

<u>A. Miyazaki</u>, P.Duchesne, D. Ledrean, D. Longuevergne, and G. Olry

Spoke cavities and their challenges

- Technology choice in a medium- β section of proton drivers
- Rich R&D programs since the late 1980s
- Matured technology for deployment in accelerators

Challenges and questions answered in this talk

- 1. Tuning strategy during manufacturing and processing
- 2. Standard heat treatments
- 3. First series production and cryomodules

Work in progress

- Full Industrialization
- Optimum multipacting vs HPR

ESS double spoke resonators

ESS linac 352 21 MHz DogLeg Target ←4.0 m→ ←38.9 m→ ←55.9 m→ ← 76.7 m → ← 178.9 m → $\leftarrow 2.5 \text{ m} \rightarrow \leftarrow 4.6 \text{ m} \rightarrow$ Spokes RFO MEBT Medium B High B Source Dump Dump Line 75 keV 3.6 MeV 90 MeV 216 MeV 571 MeV 2000 MeV

Spoke cavities @ IJCLab (summer 2023)

ESS DSR β =0.5, 352 MHz

MYRRHA β=0.37, 3**52** MHz

- ✓ Prototyping (3)
- ✓ Series production (14x2+1)
- ✓ Series cryomodule (13x2)
- Deployment to the machine

- ✓ Prototyping (4)
- Pre-series cavities (6)

PIPII SSR2 β =0.47, 325 MHz

Prototyping (3)

Vacuum insert + Vertical cryostat @ IJCLab

Merits of vacuum inserts

- IJCLab tests only jacketed cavities
- Less liquid helium is needed compared to conventional liquid inserts
- Faster cooling down and warming up

<u>Challenge</u>

- We need to tune the frequency without testing a bare cavity at cold
- Quality control of manufacturing and processing are key

Other points

- The cavity at lower position gets colder way earlier (cryo-pumping?)
- μ-metal + coils for field compensation

Tuning at the fabrication process (goal \pm 150 kHz) He Jacket TIG welding Final trimming of the cavity

- 5 mm trimming margin for both sides
- Trimming based on frequency measurement (parts clamped)

Final EB welding

50

0

 $\Delta f [kHz]$

Vertical and horizontal BCP: main tuning tool Horizontal

0.40 μm/min

counts

H-degassing: temperature and tuning (goal \pm 40 kHz)

<u>H-degassing: expected</u>

- Flux sensitivity is small (small gain by flux expulsion)
 - Low frequency and geometrical effect
- → 650C for 10 hours is sufficient and safe
- Some flanges are copper brazed

H-degassing: unexpected

- Frequency shifts to either positive or negative directions randomly
- H/V (light) BCP to compensate the unexpected change
- Mechanical tuning for a few cases

Open questions

- Is it due to the **Ti jacket** around annealed altogether?
 - Mechanical stress released by annealing
- Can the Ti act as a getter as well?

H-degassing: temperature and tuning (goal \pm 40 kHz)

Series ESS cavities: cold tests

✓ Excellent performance was achieved at 2K

- $2 n\Omega < R_s < 7 n\Omega$ at low field
- Field emission onset >> 8 MV/m for most cavities
- No major difference due to position in the VT

Cavity performance: some statistics at 2K

- Trapped flux increases both R_{s0} and R_{s1}
 - Support some theoretical models
- Intrinsic R_{s0} and R_{s1} might be anti-correlated
 - Higher R_{s0} may hide nonlinear R_{s1}

- FE onset is above nominal field for most cavities
- No HPR between VT and CM assembly
- \rightarrow How is in CM after assembly?

MYRRHA prototype cavities

- Similar shape to ESS cavities
- Vertical BCP is impossible due to lack of a HPR port
- ✓ Excellent performance was achieved at 2K
 - Comparable to ESS series cavities

		ESS	MYRRHA
	Frequency [MHz]	352	352
	G [Ω]	130	109
	B _{pk} /E _{acc} [mT/(MV/m)]	6.9	7.3
	β_{opt}	0.5	0.37
ESS			MYRRI

New challenge \rightarrow more industrialization with **pre-series** cavities

New challenge \rightarrow more industrialization with pre-series cavities

Do we need baking for spoke cavities (325-352 MHz)?

Standard arguments

- BCS resistance $R_{\rm BCS} \sim 0.8 \ {\rm n}\Omega < R_{\rm res}$ at 2K becaue of low frequency < 400 MHz
 - Baking (usually) decreases R_{BCS} and increases R_{res}
- Peak field at nominal gradient $B_{\rm pk} = 62 \ {\rm mT}$
 - Far away from high-field Q-slope
- \rightarrow Low-T baking (120C/48h) is high risk no gain (higher R_{res})
- ✓ Very gentle baking (3h) for drying water to reduce MP

<u>However</u>

- BCS resistance $R_{\rm BCS} \sim 39 \ {\rm n}\Omega \gg R_{\rm res}$ at 4.2K
- ightarrow Baking paves the way to the proton drivers at 4 K
 - A MYRRHA prototype met the specification for 2 K even at 4.2 K after low-T baking (but lost Q₀ at 2K)
 - Mid-T baking may be the way to go

future R&D: mid-T of spoke cavities

MP barriers may be a potential problem of ESS/MYRRHA

-0.05

-0.1

V eff, MV

- MP barriers are around the nominal field
 - Possible to condition within half an hour
 - Potential issue during beam operation (?)

→ PIPII SSR2 cavities were designed to include features of Balloon Cavities to reduce MP

Preliminary results of PIPII SSR2 prototype

We cannot reuse the same HPR tools \rightarrow optimizing new HPR 24

Preliminary results of PIPII SSR2 prototype

We cannot reuse the same HPR tools \rightarrow optimizing new HPR 25

Conclusion and outlook

- IJCLab has been leading development and deployment of various spoke cavities
- Challenges in manufacturing and processing were overcome
 - Skipping bare cavity testing and directly welding helium jacket in industry
 - Frequency tuning with vertical/horizontal BCP (+ mechanical tuning)
 - H-degassing at 650C was successful with the titanium jacket
- ESS series production is completed with excellent performance and will start accelerating protons soon
 - CM testing results? → See next presentation by Rocio Santiago Kern!
- MYRRHA prototype cavities showed as excellent performance as ESS series
- Industrialization of chemical process, annealing, and baking is on-going
 - Goal: as much as industry can \rightarrow similar to 1.3 GHz TESLA type cavities
- MP barriers were identified as a potential issue of ESS-type spoke cavities
 - Prototype PIP-II SSR2 was designed to avoid MP inspired by the balloon cavity
 - As a side-effect, existing HPR tooling is not sufficient \rightarrow optimization is on-going
- On-going R&D
 - Baking of spoke cavities (325-352 MHz) toward 4 K operation
 - Plasma processing of TEM cavities