

Investigation of Plasma Processing for Coaxial Resonators

Walter Hartung, Wei Chang, Kyle Elliott, Sang-hoon Kim, Taro Konomi, Kenji Saito, Patrick Tutt, Ting Xu

SRF Conference Grand Rapids, MI, USA 29 Jun 2023

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics and used resources of the Facility for Rare Isotope Beams (FRIB), which is a DOE Office of Science User Facility, under Award Number DE-SC0000661.

Topics

- Introduction
- Plasma processing development
- Plasma observations
- Cold test results
- Fundamental Power Coupler (FPC) integrity
- Conclusion

Introduction: Plasma Processing

- Degradation of SRF cavity performance over time: a concern for long-term accelerator operation
- Traditional refurbishment of a cryomodule: labor-intensive, costly, and time-consuming
- In-situ plasma processing: developed by several Labs over the past few years, with promising results; first demonstrated in an accelerator tunnel at SNS

Introduction: FRIB

•Quarter- and Half-wave resonators (QWR, HWR) $\beta = 0.043$ $\beta = 0.086$ Jie Wei, Talk MOIAA01 Total: 324 cavities in the tunnel $\beta = 0.54$ In operation for users since $\beta = 0.29$ May 2023 Pro-active plasma processing program in progress Number Beta / Type in Linac 12 0.043 / QWR 0.086 / QWR 92

Michigan State University

Facil

FRIB

0.29 / HWR

0.54 / HWR

72

148

Plasma processing development for FRIB: Challenges and Steps

Challenges

- Weak input coupling: a lot of fundamental power coupler (FPC) mismatch at room temperature
- Difficult to see cavity interior through viewports

Development Steps

Cavity β	0.043	0.086	0.29	0.54		
Step	Started?					
1 Feasibility study	yes	yes	yes	yes		
2 Plasma with custom input coupler		yes		yes		
3 Cavity cold test before and after		yes		yes		
4 Plasma with FPC		yes		yes		
5 Cavity cold test before and after		yes		yes		
6 Repeat 4 & 5 without venting in between						
7 Repeat 4 & 5 for offline cryomodule						
U.S. Department of Energy Office of Science	_	W. Hartung et al.	THIXA01, SRF 2	023. Slide 5		

Warm Cavity: FPC is mismatched for fundamental mode

Cavity β	0.043	0.086	0.29	0.54
Cavity Q ₀	2 ⋅10 ³	3·10 ³	6·10 ³	9·10 ³
Min Q _{ext,1}	1·10 ⁶	1·10 ⁶	3·10 ⁵	8·10 ⁵
$\beta_1 = Q_0 / Q_{\text{ext},1}$	2·10 ⁻³	3·10 ⁻³	2·10 ⁻²	1.10-2

 Concern: plasma in FPC rather than the cavity, risk to damage the FPC

 Alternative approach: drive plasma with a higher-order mode (HOM) using FPC, as developed by Fermilab for spoke cavities

FPC mismatch for fundamental vs HOM

Less FPC mismatch as f increases

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science Michigan State University

W. Hartung et al, THIXA01, SRF 2023, Slide 7

Plasma Processing Development

- Using FRIB cavities (leftover from production or being produced for spares)
- Clean room assembly, but must vent between plasma processing and cold tests
- Custom input antenna or spare FPC to drive plasma

Gas system

Plasma: neon with a few % oxygen, ~100 mtorr

QWR with FPC

Facility for Rare Isotope Beams U.S. Department of Energy Office of Science

W. Hartung et al, THIXA01, SRF 2023, Slide 10

Plasma Excitation and Monitoring

- "Multi-mode" monitoring: network analyzer to look for upward shift in resonant frequency due to plasma; raise drive frequency, and iterate; similar to methods used at Fermilab and JLab
- Monitor light and DC current from RF antennae

RF Measurements Example: QWR with custom antenna, TEM 5λ/4, fixed drive frequency

Current Monitoring Example: QWR with custom antenna, TEM 5λ/4, fixed drive frequency

QWR + custom antenna example: Const drive *f* vs shifted drive *f*

- Drive: TEM 3λ/4
- Monitor with network analyzer: same mode
- See very large shift for this mode; less extreme for other modes

RGA measurements: QWR with FPC Example: Day 1 of Plasma

- t_1 = start RF power ramp-up
- t_2 = reduce power after plasma ignition
- $t_3 = RF$ ramp-down and turn-off
- When plasma ignited:
 - Increase in CO₂, CO, H_2O
 - Decrease in O₂
- Signals are short-lived
- Peaks return when plasma is re-ignited the next day, as reported by SNS
- RGA signals decrease with repeated iterations

Before-and-after cold tests example: QWR with FPC

- 2 K measurements show significant reduction in field emission X-rays after plasma processing (S85-987)
- Little change in Q₀ after plasma processing

Choice of Drive Mode

- Frequency shift due to plasma is limited by coupler ignition threshold
- Simple-minded approach: pick the mode with the highest plasma density as inferred from frequency shift

Plasma processing tests

		Date	S/N	Input coupler	Harmonic number	Before & after cold tests?	Notes
		May 2021	986	custom	1	Yes: better	
		May-Jun 2021	986	custom	1	Yes: worse	Possible leak in gas sys
	ΥR Ν	Jul 2021	986	custom	1	Yes: better	(after cold test: FE worse after low- <i>T</i> bake)
	ð	Oct 2021-Jan 2022	967	FPC	1, 3, 5	Yes: better	Devel: <i>n</i> = 1, 3, 5; <i>f</i> sweeps; process: <i>n</i> = 5
	086	Feb-Mar 2022	979	FPC	5	Yes: better	
	0.	May-Jun 2022	972	FPC	5	Yes: similar	
	ß	Jul 2022-Jan 2023	986	custom	1, 3, 5	Yes: better	Devel: <i>n</i> = 1, 3, 5; <i>f</i> sweeps; MMM; process: <i>n</i> = 1
		May-Jun 2023	987	FPC	1, 3, 5	Yes: better	Devel: <i>n</i> = 1, 3, 5; <i>f</i> sweeps; MMM; process: <i>n</i> = 1
	NR N	May 2020-Mar 2021	150	custom	1	No	Devel; vary pressure, gas types (Cu sputtering)
	54 HV	Feb-Mar 2023	155	custom	1, 3	Yes: worse	Devel: <i>n</i> = 1, 3 (& 5); MMM; process: <i>n</i> = 1 new recipe
	0	Apr 2023 096		custom	1	Yes: similar	<i>n</i> = 1 new recipe
	β	Jun 2023- 096		FPC	1, 3,	In progress	Devel
F	RI	B Contract of U.S. Department Michigan State	or Rare	MMM:	Multi-mode	e monitoring o	f resonant frequencies W. Hartung et al, THIXA0

W. Hartung et al, THIXA01, SRF 2023, Slide 18

Plasma processing tests

	Date	S/N	Input coupler	Harmonic number	Before & after cold tests?	FE onset before (MV/m)	FE onset after (MV/m)		
/R	May 2021	986	custom	1	Yes: better	5	8		
	May-Jun 2021	986	custom	1	Yes: worse	8	6		
	Jul 2021	986	custom	1	Yes: better	6	8		
ð	Oct 2021-Jan 2022	967	FPC	1, 3, 5	Yes: better	6.4	10		
β = 0.086	Feb-Mar 2022	979	FPC	5	Yes: better	7	>10		
	May-Jun 2022	972	FPC	5	Yes: similar	6.6	7		
	Jul 2022-Jan 2023	986	custom	1, 3, 5	Yes: better	6	9		
	May-Jun 2023	987	FPC	1, 3, 5	Yes: better	7	≥11		
β = 0.54 HWR	May 2020-Mar 2021	150	custom	1	No				
	Feb-Mar 2023	155	custom	1, 3	Yes: worse	4.7	3		
	Apr 2023	096	custom	1	Yes: similar	8.2	≥8.4		
	Jun 2023-	096	FPC	1, 3,	In progress				

Facility for Rare FE: field emission

W. Hartung et al, THIXA01, SRF 2023, Slide 19

Plasma processing tests

		Date	S/N	Input coupler	Harmonic number	Before & after cold tests?	FE onset before (MV/m)	FE onset after (MV/m)	Plasma Location	
	/R	May 2021	986	custom	1	Yes: better	5	8	Coupler	
		May-Jun 2021	986	custom	1	Yes: worse	8	6	Coupler	
		Jul 2021	986	custom	1	Yes: better	6	8	Coupler	
	ð	Oct 2021-Jan 2022	967	FPC	1, 3, 5	Yes: better	6.4	10	Coupler	
	086	Feb-Mar 2022	979	FPC	5	Yes: better	7	>10	Coupler	
	0 =	May-Jun 2022	972	FPC	5	Yes: similar	6.6	7	Coupler	
	ß	Jul 2022-Jan 2023	986	custom	1, 3, 5	Yes: better	6	9	Coupler	
		May-Jun 2023	987	FPC	1, 3, 5	Yes: better	7	≥11	Cavity	
	VR	May 2020-Mar 2021	150	custom	1	No			Coupler	
	54 HV	Feb-Mar 2023	155	custom	1, 3	Yes: worse	4.7	3	Cavity & Coupler	
	0.	Apr 2023	096	custom	1	Yes: similar	8.2	≥8.4	Cavity	
	β	Jun 2023-	096	FPC	1, 3,	In progress			Cavity & Coupler	
F	RI	B G G G G G G G G G G G G G G G G G G G	or Rare		Multi-mode	e monitoring of	f resonant freq	uencies	rtung et al, THIXA01, SRF 202	

artung et al, THIXA01, SRF 2023, Slide 20

FPC plasma ignition, plasma sputtering

- Plasma ignition field increases ~ linearly with frequency
- At low frequency, cavity plasma ignition happens at low field with dim light and weak RGA response
- Some time and effort for us to distinguish cavity plasma vs coupler plasma
- Have seen sputtering from Cu antenna onto Nb beam port for 2 HWRs; not seen for QWRs
- Did not see sputtering (so far) if only cavity plasma at P ~ 100 mtorr; more experience needed

FPC plasma ignition, plasma sputtering

- Plasma ignition field increases ~ linearly with frequency
- At low frequency, cavity plasma ignition happens at low field with dim light and weak RGA response
- Some time and effort for us to distinguish cavity plasma vs coupler plasma
- Have seen sputtering from Cu antenna onto Nb beam port for 2 HWRs; not seen for QWRs
- Did not see sputtering (so far) if only cavity plasma at P ~ 100 mtorr; more experience needed

RF port of HWR after coupler plasma (with custom Cu antenna)

Conclusion

- Results so far suggest that plasma processing has good potential for improving FRIB resonators; effectiveness may depend on the nature of the contaminants
- More work needed on plasma development for FRIB HWRs
- Method optimization is a work in progress
 - Would like to process with cavity plasma rather than coupler plasma
 - Best mode to drive plasma: HOMs look promising; still under study
 - Optimum processing time?
 - Different groups have explored different variations in methods
- Need to test plasma processing with a cryomodule
- Need to try in the FRIB tunnel
- Parallel efforts
 - 3D RF model for cavity and coupler fields
 - Apply existing models to predict ignition thresholds
 - Additional diagnostics

Patrick Tutt, Poster WEPWB127

Acknowledgments

- Early FRIB plasma development, measurements, and analysis: Cong Zhang
- Assistance with recent plasma measurements: Sara Zeidan
- Support for plasma work: Pete Donald, Dave Norton, John Schwartz
- Help and guidance with digital cameras and optics: Igor Nesterenko
- A collaborative effort with the FRIB cryogenics team, the FRIB cavity preparation team, and the rest of the FRIB laboratory
- Thank you to plasma teams at SNS, Jlab, Fermilab, IJCLab, and ANL for useful discussions, information sharing, and suggestions

