

Conduction-Cooled SRF Cavities: Opportunities and Challenges

Neil Stilin | nas97@cornell.edu

Cornell Laboratory for Accelerator-based ScienceS & Education (CLASSE)

21st International Conference on Radio-Frequency Superconductivity (SRF 2023)

- Foundation: Conduction-Cooled SRF Cavities
- Overview: Compact Cryomodules
- Implementation: Key Challenges & Solutions
- Summary

FOUNDATION Conduction-Cooled SRF Cavities

- 1.3 GHz Nb₃Sn cavities reliably dissipate < 1 W at 10 MV/m at 4.2 K
- Cryocoolers can now extract **2+ W at 4.2 K** (turn-key)

Cryocooler-based cooling is now possible!

- 1.3 GHz Nb₃Sn cavities reliably dissipate < 1 W at 10 MV/m at 4.2 K
- Cryocoolers can now extract 2+ W at 4.2 K (turn-key)
 Cryocooler-based cooling is now possible!

New **cooling schemes** for SRF cavities

A New Frontier

• 1.3 GHz Nb₃Sn cavities reliably dissipate < 1 W at 10 MV/m at 4.2 K

A New Frontier

• 1.3 GHz Nb₃Sn cavities reliably dissipate < 1 W at 10 MV/m at 4.2 K

A New Frontier

- 1.3 GHz Nb₃Sn cavities reliably dissipate < 1 W at 10 MV/m at 4.2 K
- Cryocoolers can now extract 2+ W at 4.2 K (turn-key)
 - Cryocooler-based cooling is now possible!

New cooling schemes for SRF cavities

Proof-of-Principle Demonstrations

Initial studies completed at Cornell, Fermilab, JLab:

Cornell University

- 2.6 GHz Nb₃Sn cavity
- Beam clamp design for thermal gradient control
- First demonstration of stable RF operation at 10 MV/m!
- Controlled cooldown required

N.A. Stilin et. al, doi:10.1088/2631-8695/acdd51

2.6 GHz Nb₃Sn cavity

Proof-of-Principle Demonstrations

Cornell University

Initial studies completed at Cornell, Fermilab, JLab: **Fermilab**

- 650 MHz Nb₃Sn cavity
- Nb rings welded at equator for heat extraction
- Reached 10 MV/m after controlled cooldown

R.C. Dhuley et. al, doi:10.1088/1361-6668/ab82f0

Proof-of-Principle Demonstrations

Initial studies completed at Cornell, Fermilab, JLab: Jefferson Lab

- 1.5 GHz Nb₃Sn cavity
- 5 mm copper layer electroplated to cavity exterior
 - Offers better thermal conduction across cavity
- *Performance possibly limited by strain on Nb3Sn layer*

G. Ciovati et. al, doi: 10.1088/1361-6668/ab8d98

Proof-of-Principle Demonstrations

Similar studies ongoing at KEK & IMP:

Cavity cooling test under construction

- Chamber and components were prepared for conduction cooling R&D
- Applying prototype high-capacity GM-JT cryocooler from SHI (see talk THIXA03)

First test performance:

- Q₀ at low field ~9E9
- E_{acc,max} ~6.6 MV/m Structural optimization and improvement of the conduction cooling is ongoing

Good thermal stability at the dissipation power of below 3.2W

Precise slow-cooling of 2-10min/K

Courtesy of Ziqin Yang

Poster

WEPWB081

Neil Stilin | Conduction Cooled SRF Cavities: Opportunities and Challenges

Courtesy of Kensei Umemori

enter for

Applied

応用超伝導加速器イノベーションセンター

iCASA

We've shown conduction-cooled cavities are possible... why bother?

We've shown conduction-cooled cavities are possible... why bother?

Makes SRF technology accessible to small-scale operations

We've shown conduction-cooled cavities are possible... why bother?

→ Makes SRF technology accessible to small-scale operations

Current infrastructure requirements:

We've shown conduction-cooled cavities are possible... why bother?

→ Makes SRF technology accessible to small-scale operations

Current infrastructure requirements:

Significantly lower costs, very low-maintenance (robust), turn-key operation (no expertise)

Applications for small-scale operations:

- Energy and environment
 - Sterilizing waste water, sludge, medical waste
 - Flue gas treatment
 - Remediation of contaminated soil
 - Asphalt treatments (durability)
- Medicine
 - Radioisotope production
- Security & defense
 - Cargo inspection
- Industry
 - Producing biofuel
 - Curing carbon fiber composites
- ... and many more!

Typical beam parameters

- Moderate Energy: 1 10 MeV
- High Current: $\geq 100 \text{ mA}$
- High Avg. Power: $\geq 1 MW$

Decontamination cross section for a 10 MeV beam into a high-claycontent 5% contaminated soil

U.S. DOE Report, "Accelerators for America's Future"

U.S. DOE Report, "Workshop on Energy and Environmental Applications of Accelerators"

OVERVIEW Compact Cryomodules

8 Examples

R&D Project – General Application

Energy Gain	1 MeV
Beam Current	100 mA
Average Power	100 kW

- Single-cell **1.3 GHz** Nb₃Sn cavity
- Nb rings at cavity equator (2) and near cavity irises (2)
- 1 PT420 + 1 PT425 cryocoolers (Cryomech)
 - Total capacity: 4.15 W at 4.2 K and 100 W at 45 K

IARC @ Comparison International Internationa

Application: Wastewater Treatment

Beam Energy	10 MeV
Beam Current	100 mA
Average Power	1 MW

- Design: treat up to 12 million gallon / day
- Pre-accelerator (RT gun + injector cavity + sol.)
- Accelerating cryomodule
 - 5-cell 650 MHz Nb₃Sn cavity
 - Twin coaxial FPC
 - 6 PT420 + 2 PT425 cryocoolers (Cryomech)
- Beam delivery (raster magnet + beam horn)

See: R.C. Dhuley et al., Phys. Rev. Accel. Beams **25**, 041601 (2022) "Design of a 10 MeV, 1000 kW average power electron-beam accelerator for wastewater treatment applications"

Talk THIXA07

Core Team: Ram Dhuley, Christopher Edwards, Jayakar Thangaraj, Tom Kroc

See also: C2Po1B-10 at CEC in July

Application: Medical Device Sterilization

- Beam power: 20 kW
- 1.5-cell 650 MHz Nb₃Sn cavity

IARC @ 🛟 Fermilab

• Multi-year funded program, looking to replace Co-60 with accelerator-based ionizing radiation

Cryomodule Design – Tom Nicol

Application: Improved Pavement Processing

- Beam power: 200 kW
- 9-cell 1.3 GHz Nb₃Sn cavity
- Multi-year funded program, interested in the ability to modify pavement in-situ

Cryomodule Design - Tom Nicol (under development)

Courtesy of Chris Edwards

- Twin coaxial FPC
- 4 GM cryocoolers (each 1.5 W at 4.2 K)
- Beam generation and delivery systems
- Possible use in flue gas treatment

G. Ciovati et al., Phys. Rev. Accel. Beams **21**, 091601 (2018) US Patent 10,932,355 High-current conduction cooled superconducting radio-frequency cryomodule

Example of a facility layout using a 1 MW CW commercial klystron

2023-06-29

Neil Stilin | Conduction Cooled SRF Cavities: Opportunities and Challenges

Application: SRF Photogun for MeV UED/UEM

Beam energy	1.655 MeV	1.655 MeV
Charge	5 fC	0.5 pC
Laser pulse length, rms	6.4 fs	6.4 fs
Beam bunch length, rms	167 fs	741 fs

- 1.5-cell 1.3 GHz Nb₃Sn cavity
- One cryocooler is enough to cool Nb3Sn gun at 4K
- Final goal user facility at BNL Accelerator Test Facility
- Successful test of pure Nb photogun at 2 K
- 4 K test of Nb₃Sn photogun had low Q₀ and HFQS

See: R.Kostin et al., "Conduction cooled SRF photogun for UEM/UED applications", UED 308081, 23-rd ATF user meeting, 2020. R.Kostin et al., "Status of Conduction Cooled SRF Photogun for UEM/UED", proc. of IPAC21, TUPAB167. *DoE SBIR Phase II Grant #DE-SC0018621

Assembled cryomodule

2023-06-29

Neil Stilin | Conduction Cooled SRF Cavities: Opportunities and Challenges

Application: Deployable Conductively Cooled Cryostat

- Small, mobile cryostat with no cryoplant requirement
- Target design: 4.5-cell 650 MHz Nb₃Sn Cavity
- Utilizes 4 PT420 cryocoolers (Cryomech)
- Currently in fabrication to test with a single-cell 650 MHz cavity in the last quarter of this year

Application: Standalone Cryomodule for SC Nb₃Sn QWRs

- Current QWRs for ion linacs are ~ 1 m long
- Nb₃Sn enables higher frequency (small) & lower loss
- ATLAS upgrades, medical isotope production

Courtesy of Mike Kelly

IMPLEMENTATION Key Challenges & Solutions

Focus: Cavity & Coupler

What makes this difficult?

What makes this difficult?

1) Limited cooling power \rightarrow 2 – 2.5 W per cryocooler at 4.2 K (Cornell: 4.15 W total)

What makes this difficult?

- 1) Limited cooling power \rightarrow 2 2.5 W per cryocooler at 4.2 K (Cornell: 4.15 W total)
- 2) Cavity must stay near 4.2 K for high $Q_0 \rightarrow$ very small gradients on thermal path

What makes this difficult?

- 1) Limited cooling power \rightarrow 2 2.5 W per cryocooler at 4.2 K (Cornell: 4.15 W total)
- 2) Cavity must stay near 4.2 K for high $Q_0 \rightarrow$ very small gradients on thermal path
- 3) Uniform cooling of cavity assembly \rightarrow good conduction around entire cell

What makes this difficult?

1) Limited cooling power \rightarrow 2 – 2.5 W per cryocooler at 4.2 K (Cornell: 4.15 W total)

2) Cavity must stay near 4.2 K for high $Q_0 \rightarrow$ very small gradients on thermal path

3) Uniform cooling of cavity assembly \rightarrow good conduction around entire cell

Different approaches being examined:

Different approaches being examined:

a) Four intercepts* b) Nb + 5NAI5N Al foil straps c)

Different approaches being examined:

‡ Fermilab

a)	Two intercepts*
b)	Nb + 5N Al
c)	5N Al bent sheet

* Per cavity cell

Different approaches being examined:

🛟 Fermilab

Two intercepts* a) b) Nb + 5NAI5N Al bent sheet C)

* Per cavity cell

Conduction Cooled SRF Cavities: Opportunities and Challenges Neil Stilin

- a) One intercept*
- Cu (cold-spray & plated) b)
- C103 foil straps c)

Challenge #1: effective **conduction cooling** of cavity

Different approaches being examined:

🛟 Fermilab

Two intercepts* a) b) Nb + 5NAI5N Al bent sheet C

* Per cavity cell

- a) One intercept*
- Cu (cold-spray & plated) b)
- C103 foil straps c)

Question: *Is my design effective?*

Heat Extraction

Question: Is my design effective?

- Perform thermal modeling corresponding to **10 MV/m operation**
- Primary RF heat load extracted by equator intercepts
- Temperature results show small thermal gradients across cavity assembly
- Total of 1.65 W at 4.2 K (0.16 W static / 1.49 W dynamic)

Experimental Comparison

Question: Is this realistic?

Question: Is this realistic?

Recall **proof-of-principle demonstration***:*

Question: Is this realistic?

Recall **proof-of-principle demonstration***:*

Experimental Comparison

Good agreement between

simulation and experiment!

Question: Is this realistic?

Recall proof-of-principle demonstration:

Question: *Is my design effective?*

Cavity Cooldown

Question: Is my design effective?

- Nb₃Sn requires small thermal gradients during cooldown for optimal performance
 - \rightarrow Aim for < 200 mK/m to reduce thermocurrents (Seebeck) during transition at T_c
- *Proof-of-principle study demonstrated effectiveness of* **independent heater control**
- Same capability enabled by use of additional intercept rings near cavity irises

ACHIEVED:

Ability to optimize cavity cooldown to improve RF performance

Again: limited cooling power! \rightarrow **4.15 W** at **4.2 K** in Cornell's design

Again: limited cooling power! \rightarrow **4.15 W** at **4.2 K** in Cornell's design

 \Rightarrow But: 1.65 W already used by cavity \rightarrow only 2.5 W remaining at 4.2 K

- Again: limited cooling power! \rightarrow **4.15 W** at **4.2 K** in Cornell's design
 - \Rightarrow But: 1.65 W already used by cavity \rightarrow only 2.5 W remaining at 4.2 K
 - We need to produce only ~ **1 W per coupler** at 4.2 K

 \Rightarrow Again: limited cooling power! \rightarrow **4.15 W** at **4.2 K** in Cornell's design

 \Rightarrow But: 1.65 W already used by cavity \rightarrow only 2.5 W remaining at 4.2 K

We need to produce only ~ **1** W per coupler at 4.2 K

Compare to Cornell ERL injector couplers:

- Max forward power: **75 kW** ٠
- Heat load at 5 K: ~ 3 W

 \Rightarrow Again: limited cooling power! \rightarrow **4.15 W** at **4.2 K** in Cornell's design

 \Rightarrow But: 1.65 W already used by cavity \rightarrow only 2.5 W remaining at 4.2 K

We need to produce only ~ 1 W per coupler at 4.2 K

Compare to Cornell ERL injector couplers:

- Max forward power: **75 kW** ٠
- Heat load at 5 K: ~ 3 W

 \Rightarrow Again: limited cooling power! \rightarrow **4.15 W** at **4.2 K** in Cornell's design

 \Rightarrow But: 1.65 W already used by cavity \rightarrow only 2.5 W remaining at 4.2 K

We need to produce only ~ 1 W per coupler at 4.2 K

Compare to Cornell ERL injector couplers:

- Max forward power: **75 kW**
- Heat load at 5 K: ~ 3 W

Factor of 10⁵ difference between **RF** and dissipated power required!

> Optimize heat load distribution, enable conduction cooling, reduce cost & complexity

> Optimize heat load distribution, enable conduction cooling, reduce cost & complexity

> Optimize heat load distribution, enable conduction cooling, reduce cost & complexity

Heat Load Distribution

Conduction Cooling

Heat Load Distribution

Conduction Cooling

Heat Load Distribution

Conduction Cooling

Cost & Complexity

1) Implement **"RF shield,"** inspired by Fermilab design¹ & further modified \rightarrow Protects 4.2 K components from high fields

¹R.C. Dhuley et al., Phys. Rev. Accel. Beams **25**, 041601 (2022)

Heat Load Distribution

Conduction Cooling

Cost & Complexity

1) Implement "**RF shield**," inspired by Fermilab design¹ & further modified \rightarrow Protects 4.2 K components from high fields

2) Add quarter-wave transformer to inner bellows \rightarrow Optimizes RF behavior for ± 8mm throw

¹R.C. Dhuley et al., Phys. Rev. Accel. Beams **25**, 041601 (2022)

2023-06-29

Heat Load Distribution

Conduction Cooling

Heat Load Distribution

Conduction Cooling

- 1) Extract heat via flexible thermal straps mounted to coupler intercepts
 - \rightarrow Replace typical cooling pipe intercepts with copper disks and flanges

Heat Load Distribution

Conduction Cooling

Heat Load Distribution

Conduction Cooling

Cost & Complexity

1) Remove cold RF window, use warm RF window only

 \rightarrow Greatly simplifies cold portion of coupler

Heat Load Distribution

Conduction Cooling

- 1) Remove cold RF window, use warm RF window only \rightarrow Greatly simplifies cold portion of coupler
- 2) Remove all but one outside bellows
 - ightarrow Only needed for thermal contraction

- *Perform thermal modeling for up to 100 kW forward power*
- Air cooling prevents overheating on inner conductor and RF window
- Resulting heat loads:
 - Total of **21.1 / 29.5 / 37.9 W** at **45 K** for 0 / 50 / 100 kW operation
 - Total of 0.46 / 0.80 / 1.11 W at 4.2 K for 0 / 50 / 100 kW operation

- *Perform thermal modeling for up to 100 kW forward power*
- Air cooling prevents overheating on inner conductor and RF window
- Resulting heat loads:
 - Total of 21.1 / 29.5 / 37.9 W at 45 K for 0 / 50 / 100 kW operation
 - Total of 0.46 / 0.80 / 1.11 W at 4.2 K for 0 / 50 / 100 kW operation
- Recall ERL injector heat loads:
 - **75 W** at 80 K
 - **3 W** at 5 K

Thermal Results

- *Perform thermal modeling for up to 100 kW forward power*
- Air cooling prevents overheating on inner conductor and RF window
- Resulting heat loads:

ACHIEVED: Only 1.1 W dissipated at 4.2 K for 100 kW forward power

Full System Example: My Cryomodule

Cryocooler Cold Heads			
Thermal Straps		45 K	4.2 K
	Source	Heat Load	Heat Load
G10 Rods	Cavity & Beamline	15.2 W	1.65 W
	Coupler	37.9 W	1.11 W
Space Frame	Support Rods	0.34 W	0.02 W
	Thermal Rad.	4 W	0.1 W
Heat Intercepts	TOTAL	95.34 W	3.99 W
	Cryocooler Limits	100 W	4.15 W
Thermal & Magnetic Shielding 1.3 GHz Cavity Coupler Antenna			

SUMMARY What have I shown?

- Achieved first-ever operation of a conduction-cooled SRF cavity at **10 MV/m**!
- Designed a conduction cooling assembly with effective performance both during RF operation and cavity cooldown
- Designed a high-power (**100 kW**) coupler which dissipates only **1.1 W** at 4.2 K
- Designed a complete cryostat capable of operating with only **two cryocoolers**.

- Achieved first-ever operation of a conduction-cooled SRF cavity at **10 MV/m**!
- Designed a conduction cooling assembly with effective performance both during RF operation and cavity cooldown
- Designed a high-power (**100 kW**) coupler which dissipates only **1.1 W** at 4.2 K
- Designed a complete cryostat capable of operating with only **two cryocoolers**.

Cool future for this technology!

Thank you to the following people for their significant contributions:

Fermilab: Grigory Eremeev, Sam Posen, Jayakar Thangaraj, Ram Dhuley, Christopher Edwards, and Tom Kroc Jefferson Lab: Gigi Ciovati, John Vennekate KEK: Kensei Umemori IMP: Ziqin Yang Euclid: Roman Kostin RadiaBeam: Sergey Kustaev Argonne: Mike Kelly

 Cornell cryomodule team: Neil Stilin, Matthias Liepe, Adam Holic, Jessica Turco, James Sears, Peter Quigley, Tim O'Connell, Valery Shemelin
Technician support: Terri Gruber-Hine, Holly Conklin, Greg Kulina

U.S. DOE award DE-SC0021038 "Next Steps in the Development of Turn-Key SRF Technology"