

Measurements of the Amplitudedependent Microwave Surface Resistance of a Proximity-coupled Au/Nb Bilayer

Thomas Oseroff, Zeming Sun, Matthias Liepe

Outline

Motivation

Sample preparation

RF excitation & measurement

Results

Niobium oxide

Metallic NbO

- normal conductor (for accelerators)
- Practically immune to heat treatments
- Present on most/all cavity measurements
- What is its effect on surface resistance?

Cartoon (following a 5 hr 800° C UHV bake) Majority Nb₂O₅ (3-5 nm) Majority NbO₂ (1-2 nm) NbO_x (0.1-1 nm) Nb

Proximity-coupling

Parameters

- R_b: contact resistance
- d: normal layer thickness
- σ : electrical conductivity

Alex Gurevich and Takayuki Kubo Phys. Rev. B 96, 184515 Takayuki Kubo and Alex Gurevich Phys. Rev. B 100, 064522

Proximity-coupling

Parameters

- R_b: contact resistance
- d: normal layer thickness
- σ : electrical conductivity

Alex Gurevich and Takayuki Kubo Phys. Rev. B 96, 184515 Takayuki Kubo and Alex Gurevich Phys. Rev. B 100, 064522

Weakly coupled (R_b high)

Strongly coupled (R_b low)

Proximity-coupling

Parameters

- R_h: contact resistance
- d: normal layer thickness
- σ : electrical conductivity

Alex Gurevich and Takayuki Kubo Phys. Rev. B 96, 184515 Takayuki Kubo and Alex Gurevich Phys. Rev. B 100, 064522

Weakly coupled (R_b high)

Strongly coupled (R_b low)

Proximity-coupling

- Normal conducting layer takes on some superconducting behaviors
- Superconducting properties near the interface are altered due to pair-breaking effects

Impact of normal layer on surface resistance

Modeled surface resistance

Impact of normal layer on surface resistance

Modeled surface resistance

Experiments on modifying oxide

How to measure normal layer influence?

Directly with niobium oxide

- One explanation for variation in measurements with varying oxide structure
- Difficult to characterize properties
- Difficult to control for systematic study

Replace with Gold

- Adheres well to niobium
- Noble metal → minimal oxidation
- Expect better control of relevant properties

Outline

Motivation

Sample preparation

RF excitation & measurement

Results

Procedure

• Standard preparation of niobium

Procedure

- Standard preparation of niobium
- Remove oxide in N₂ atmosphere
 - Dilute HF soak in glove box
 - Seal in plastic bag

Glovebox

Procedure

- Standard preparation of niobium
- Remove oxide in N₂ atmosphere
 - Dilute HF soak in glove box
 - Seal in plastic bag

Glovebox

Procedure

- Standard preparation of niobium
- Remove oxide in N₂ atmosphere
 - Dilute HF soak in glove box
 - Seal in plastic bag

Glovebox

Procedure

- Standard preparation of niobium
- Remove oxide in N₂ atmosphere
 - Dilute HF soak in glove box
 - Seal in plastic bag
- Thermal evaporation of gold
 - Open bag with N₂ purge active
 - Pump chamber
 - Deposit gold

Thermal evaporation chamber

Procedure

- Standard preparation of niobium
- Remove oxide in N₂ atmosphere
 - Dilute HF soak in glove box
 - Seal in plastic bag
- Thermal evaporation of gold
 - Open bag with N₂ purge active
 - Pump chamber
 - Deposit gold

Thermal evaporation chamber

Procedure

- Standard preparation of niobium
- Remove oxide in N₂ atmosphere
 - Dilute HF soak in glove box
 - · Seal in plastic bag
- Thermal evaporation of gold
 - Open bag with N₂ purge active
 - Pump chamber
 - Deposit gold
- Measure contact resistance

Measure contact resistance on sample

- With native oxide: $R_B = 5.0 \times 10^{-12} \ \Omega \cdot m^2$
- With glovebox: $R_B \approx 5.6 \times 10^{-13} \ \Omega \cdot m^2$

Outline

Motivation

Sample preparation

RF excitation & measurement

Results

Sample host cavity

Sample host cavity

Calibration measurement (niobium sample)

Agrees with theory

Low-field R(T) fits to SRIMP model using parameters expected for 5 hr 800° C UHV Nb

Agrees with experiment

Comparable resistance to Fermilab 3.9 GHz TM₀₁₀ results with similar preparation

Consistent for niobium samples

- Similar surface resistances
- Similar quench fields

Outline

Motivation

Sample preparation

RF excitation & measurement

Results

Compare surface resistance with native oxide to that with minimum thickness Au

1.6 K & 5.2 GHz

Surface resistance magnitude was reduced following gold-passivation procedure

Measure effect of thickness with minimal variation to other relevant parameters

1.6 K & 4.0 GHz

1.6 K & 5.2 GHz

Normalized R(B)

Surface resistance field-dependence was changed by gold-passivation procedure

Contributions to the community

Further evidence that niobium oxide is relevant to surface resistance

Data on the role of normal conductor thickness in surface resistance

Suggests benefits from gold as a means of surface passivation

Contributions to the community

Further evidence that niobium oxide is relevant to surface resistance

Data on the role of normal conductor thickness in surface resistance

Suggests benefits from gold as a means of surface passivation

More information: https://arxiv.org/pdf/2305.12035.pdf