Development of Superconducting Nb for Accelerator Structures at Stanford University: 1966 - 1979

John P. Turneaure Hansen Experimental Physics Laboratory Stanford University

Why use Nb

- Benefits
 - High transition temperature: $T_c = 9.26 \text{ K}$
 - High critical magnetic field: $H_{c1} = 1735$ Oe
 - Refractory metal: melting temperature = 2477 °C
 - Good electron-field-emission properties
 - Resistant to damage from heating and arcing
 - Stable surface oxide resistant to corrosion
 - Structurally suitable for fabricating accelerator structures
- Questions
 - Is surface impedance described by BCS theory
 - What is the limiting rf magnetic field
 - Methods to produce Nb accelerator structures
 - Initial tests with a CVD Nb film did not look promising
 - Solid Nb cavities (cost, fabrication & processing methods)

1967 - 1968

11.2 GHz TE₀₁₁-mode Nb cavities, (I. Weissman, J.P. Turneaure)

Cavity preparation

- Composed of 3 parts
 - Right circular cylindrical section
 - 2 end plates
- Reactor grade Nb
 - Arc melted (AM)
 - Electron beam melted (EBM)
 - Recrystallized fully wrought (RFW)
- Processing methods
 - Mechanical polishing
 - Chemical polishing
 - Electropolishing
 - UHV firing at $2000 2100 \circ C$

Summary results

- Mechanically polished surfaces gave poor results
- EB melted Nb parts with 6 crystals
 - + Q_0 at 1.2 K: 1.3×10^{10} & 3.2 $\times\,10^{10}$
 - H_{max} = 259 & 436 Oe
- AM Nb parts with 6.2 mm crystal size
 - Q₀ at 1.2 K = 3.7×10⁹
 - H_{max} = 398 Oe
- Results for UHV fired RFW Nb parts
 - Q₀ at 1.2 K = 2.8×10⁹
 - H_{max} = 411 Oe

BCS theory at high frequency accurately describes Nb data

1969 TM₀₁₀-mode EB-welded Nb cavities at 8.6 GHz (J.P. Turneaure, N.T. Viet)

Cavity preparation

- Halves machined from annealed RFW reactor grade Nb rod
- 100% penetration EB weld at midplane of cavity
- UHV firing from 1750 2100 °C
- Chemical polishing
- Assembled in glove box with dry nitrogen to a copper tubulation and to coaxial ceramic window
- Rough pumped with a sorption pump
- Pumped with an ion pump & baked at 100 °C for 10 hours
- Cooled to room temperature with a final pressure of less than 10⁻⁹ Torr
- Tubulation pinched off to form a permanent vacuum

TM₀₁₀-mode Nb cavity with 26.7 mm ID

Results for TM_{010} -mode EB welded Nb Cavities

- Q_0 's as high as 10^{11} (3 n Ω)
- Peak surface mag. field of 1080 Oe Peak axial electric field of 47 MV/m with $Q_0 = 8 \times 10^9$
- 1080 Oe is 62% of H_{C1}
 - Field limited by thermal instability
- No electron multipacting observed
 - Shortest cavity length of 0.215 λ
 - Lowest order 2-sided multipacting possible is 4th order
- X-radiation observed for one cavity test
 - The cavity was exposed to the ambient atmosphere for several days prior to assembly
 - Cleanliness of Nb surface is important

1970 - 1979

Prototype TM_{010} Nb cavities & multicell Nb structures at L-band & S-band

(P. Kneisel, Y. Kojima, C. Lyneis, M. McAshan, H. Schwarz, J. Sayag, H.A. Schwettman, J.P. Turneaure, N.T. Viet)

Manufacturing methods

- Round RFW reactor grade Nb sheet 5 mm thick sheet
- Hydroform into a cup & stress relieve
- Machine half cells
- EB welding of half-cells to form a cavity or multicell structure
- UHV fire @ 1800 2000 °C
- Chemically polish
- Electropolish
- Anodize
- Assemble in glove box or equivalent

In-house facilities

- Machine lathes with tracer attachments and vacuum chucks
- HV electron-beam welder
- Unique UHV furnace
 - Temperature up to 2500 °C
 - Hot zone 30 cm diameter by 90 cm long
- Chemical processing room with remote handling of parts
- Temperature controlled room for measuring frequency & field profile
- Glove box for assembling cavities & structures

Summary results of TM₀₁₀-mode Nb cavities and multicell structures at L-band & S-band

- Q_0 's from 2×10⁹ to 4×10¹⁰
- Peak axial electric fields (peak surface magnetic fields) up to
 - $E_a = 15 \text{ MV/m} (H_p = 350 \text{ Oe}) \text{ at } 1.3 \text{ GHz}$
 - $E_a^{"} = 24 \text{ MV/m} (H_p^{"} = 650 \text{ Oe}) \text{ at } 2.8 \text{ GHz}$
 - Peak fields increased with frequency ($E_a = 47 \text{ MV/m}$ ($H_p = 1080 \text{ Oe}$) at 8.6 GHz)
- X-radiation due to electron field emission occurred at high electric field
- Electron multipacting was observed in all cavities & structures
 - Higher order multipacting field levels could be passed through
 - Lower order multipacting often limited the field that could be reached
- Cavities with a sealed vacuum after UHV bakeout at 100 °C performed better
 - No degradation after hours of operation with strong electron field emission
- Regenerative excitation of other high-Q modes occurred in the presence of strong electron multipacting and electron-field-emission loading
 - Eliminated by selectively loading appropriate high-Q modes

Electron field emission study of TM₀₁₀-mode cavity at 1.2 GHz (I. Ben-Zvi, J. Crawford, J.P. Turneaure)

- X-ray photo of cavity with pin hole camera
- X-ray image is axisymmetric
 - Verified by other views

X-ray photo of TM_{010} -mode cavity at 1.2 GHz with a 17.7 mm ID

Monte-Carlo simulation of the multiplication of EFE electrons

- Simulation of 88 initial EFE electrons
 - Followed secondary electrons and one or zero backscattered electrons
 - Stopped after 70 electrons produced
- Max simulated impact energy was 0.89 MeV
 - Limited by # of initial electrons
- Produced a non-resonant cloud of low energy electrons at outer radius
- Electrode at outer radius
 - < 10 nA during EFE loading
 - -300 μ A during electron multipacting

Experimental & simulated X-ray spectra agree

- X-rays pass through 3 mm Nb, 5 mm Al, 0.5 mm Fe, & 100 mm liquid He
- Spectrum taken with a NaI crystal
- Counting rate of 800 cnts/s with pulses decaying in 1 μs
 - Chance coincidences were not a problem
- Maximum energy of 1.3 MeV
 - 2.4 times max energy for a single pass
- Simulated spectrum is dashed curve
 - Max energy of 0.89 MeV is the result of limited number of initial electrons
- Simulation program served as the precursor for a program to simulate single-point electron multipacting

Location of electron multipacting in TM₀₁₀-mode cavity (C.M. Lyneis, H.A. Schwettman, J.P. Turneaure)

- Features of 2.8 GHz TM₀₁₀-mode cavity
 - R = 4.7 mm
 - Anodized to enhance secondary electron emission
 - Instrumented with thermometers to locate position of heat dissipation
- During multipacting temperature increase was observed in temperature sensors D & E or E & F
 - Location of temperature increase consistent with multipacting simulation

Fig. 2. Example of electron trajectories for 3rd order singlepoint electron multipacting calculated with simulation program

Instrumentation of cavity with thermometers spaced along the r-z surface and around the axis

Single-point electron-multipacting experiment & simulation agree

Electron-multipacting experimental & simulated electric field levels for TM₀₁₀-mode cavity

E_a (expt) (MV/m)	E_a (simul) (MV/m)	Order	$\overline{U}_{\text{impact}}$ (eV)	$\delta(\overline{U}_{impact})$	$F_{\rm se}$
6.0	6.01	6	50	0.38	2.8
7.7	7.25	5	58	0.43	2.4
8.8	9.25	4	73	0.52	1.8
11.8	12.4	3	122	0.78	1.4
17.1	18.6	2	265	1.15	1.0

 $\begin{array}{l} \mathsf{E}_{\mathsf{a}} \mbox{ (expt): experimental electric field level} \\ \mathsf{E}_{\mathsf{a}} \mbox{ (simul): simulated electric field level} \\ \mbox{Order: order of single-point electron multipacting} \\ \underline{U}_{\mathsf{impact}} \mbox{: Average energy of electron impact} \\ & \delta(\underline{U}) \mbox{: secondary emission coefficient a Uimpact} \\ & \mathsf{F}_{\mathsf{se}} \mbox{: Secondary emission enhancement factor} \end{array}$

No electron multipacting in 2.8 GHz TM₀₁₀-mode cavity with sharp corner

- Simulated multipacting of a sharp-cornered (R = 0) TM₀₁₀-mode cavity
 - No electron multipacting with increasing fields through 3rd order multipacting
- Produced S-band TM_{010} -mode Nb cavity with corner radius of 0.38 mm
 - Anodized Nb to enhance secondary electron emission
 - No electron multipacting with increasing fields through 3rd order multipacting

What was learned from 1966 to 1979?

- The surface impedance of superconducting Nb is accurately described by the BCS theory as extended to high frequency by Mattis and Bardeen
- Q_0 's from 2×10⁹ to 4×10¹⁰ are relatively easy to attain
- A field of 1080 Oe was demonstrated, which is 62% of $\rm H_{C1}$
 - Limited by thermal runaway, not superconductivity
- An appropriate cavity geometry can mitigate electron multipacting
- UHV & Cleanliness of the superconducting surface are very important
- Accelerator structures can be successfully manufactured and processed with RFW reactor grade Nb
 - By the beginning of 1974, we produced four 6 m 1.3 GHz Nb accelerator structures for the Stanford linac