### Understanding the Field and Frequency Dependence of RF Loss in SRF Cavities



#### Pashupati Dhakal<sup>1</sup>, B. Khanal<sup>2</sup>, G. Ciovati<sup>1,2</sup> and A. Gurevich<sup>2</sup>

<sup>1</sup> Jefferson Lab, Newport News VA
<sup>2</sup> Old Dominion University, Norfolk VA



Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177





## Outline

- RF loss
- Q- Slope or Q-Rise
- What do we know about Q-rise?
- Surface Alloying
- Temperature and Frequency Dependence

































Understanding the Field and Frequency Dependence of rf Loss in SRF Cavities



# High Q<sub>0</sub>

- The quality factor increases with the increase in accelerating gradient.
- The high quality factor was the result of reduction in BCS surface resistance (temperature dependent part of surface resistance) as a result of impurity.
- The reduced dissipation was explained due to the currentinduced broadening of the quasiparticle density of states in dirty limit.
- Few other theoretical models were proposed to explain the Q-rise phenomenon.



## Q-rise and DOS with PTC



- Single gap sharply peaked at 1. 55 meV with low  $\Gamma/\Delta$  indicate the uniform surface
- Large spread in gap (1.1 1.47 meV), indicative of non uniform superconducting properties Treatment improved significantly the surface superconductivity in terms of the amplitude of the gap and the pair-breaking parameter, as well as their uniformity, are consistent with the improvement of the cavity  $Q_0$  value

P. DHAKAL et al. Phys. Rev. ST Accel. Beams 16, 042001 (2013)







Stronger inhomogeneities of superconducting properties on non doped Nb

8

E. Lechner et al. Phys. Rev. Applied, 13, 044044 (2020)



Q-rise and DOS with STM



Stronger inhomogeneities of superconducting properties on non doped Nb



Q-rise and DOS with STM



Jefferson Lab

#### Do we always get Q-rise with alloying?



















Understanding the Field and Frequency Dependence of rf Loss in SRF Cavities





10









## When do we get Q-rise?

- $\tau_{\rm r}$  = recombination time for Cooper pairs
- $\tau_s$  = inelastic scattering ( scattering of quasiparticles on phonons)

11



- Non-equilibrium effect occurs when  $(\tau_s, \tau_r > \tau_{rf})$
- Non-equilibrium effects become more pronounced at T <<T<sub>c</sub>.
- Impurity or thin proximity coupled metallic sub oxide reduces  $\tau_r$  and  $\tau_s$  such that cavity drive to non-equilibrium state. Actual frequency and temperature dependence of  $\tau_r$  and  $\tau_s$  is very sensitive to surface state.
- For low frequency, the condition for  $\tau_s$ ,  $\tau_r > \tau_{rf}$ may met at much lower temperature.

Gurevich, SUST (2023) Kubo & Gurevich, PRB 100, 064522 (2019) Kaplan et al., PRB 14, 4854 (1976)



#### Focus with Nitrogen treatment at Low temperature



Quality factor can be tuned with temperature and time of baking duration. The mfp can extracted from the change in penetration depth (  $\infty \Delta f$ ), resulting in clean-to-dirty limit transition.

Jefferson Lab

#### Focus with Nitrogen treatment at Low temperature



Quality factor can be tuned with temperature and time of baking duration. The mfp can extracted from the change in penetration depth (  $\infty \Delta f$ ), resulting in clean-to-dirty limit transition.

Jefferson Lab





















Understanding the Field and Frequency Dependence of rf Loss in SRF Cavities

13

Jefferson Lab

#### **Frequency Dependence RBCS (Temperature Dependence)**



The dip in RBCS shifts to lower Bp with decreasing T, non-equilibrium effects increase with decrease in T



# **Frequency Dependence R**<sub>BCS</sub>





## **Frequency Dependence R**<sub>BCS</sub>





### **Requirement for Q-rise (frequency)**



- Q-rise phenomenon observed on cavities resonating frequency higher than 900 MHz at 2.0 K
- The non equilibrium effects may appear at frequency higher than threshold frequency (~0.9 GHz) at 2.0 K
- At low frequency, the nonequilibrium effect is negligible, but it may play a role at much lower temperature.

Kubo & Gurevich, PRB, 2019

Jefferson Lab

Understanding the Field and Frequency Dependence of rf Loss in SRF Cavities



- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .





- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .

Jefferson Lab



- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .



- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .

Jefferson Lab



- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .

Jefferson Lab



- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .

**WEPWB052** 

N. Raut et al.



- Half wave coaxial cavity with first 4 TEM modes.
- Baseline measurements with BCP,  $R_s(T)$  and  $R_s(B_p)$ .
- Mid-T bake with 320 C/ 100 mins. Test all 4 modes for  $R_s(T)$  and  $R_s(B_p)$ .

**WEPWB052** 

Kolb et al., arXiv:2306.12588

N. Raut et al.

## **Summary and Outlook**

- Improvement in the quality factor of SRF Nb cavities was observed after annealing at 800 °C/3 h in vacuum followed by baking at 120 175 °C in low partial pressure of nitrogen inside a furnace compared to the traditional 120 °C bake in UHV.
- Higher accelerating gradient were achieved compared to the high-T N2 treatment.
- Q-rise phenomenon observed on cavities resonating frequency higher than 900 MHz based on available RF results at 2.0 K.
- The crossover frequency and temperature from equilibrium to non-equilibrium or vice versa still need to be investigated. This could be explored in multi-mode half wave resonators.



# Thank you for listening!



