

Energy Barrier at Superconductor-Superconductor Interfaces

Tobi Junginger (UVIC+TRIUMF)

22 TRILIME

- *In this talk I will argue that*
	- – *SRF heterostructures have the potential to achieve accelerating gradients beyond niobium's fundamental limitation*
	- – *Low temperature baked niobium cannot be considered as an effective bilayer of dirty and clean niobium at the relevant length scale*
- *My arguments are based on experimental results from muSR, low energy muSR and magnetometry*

Larger Accelerating Gradients through Heterostructure s

- • *The multilayer approach has been proposed in 2006 by A. Gurevich*
	- *No thermodynamically stable parallel vortices in decoupled S layers thinner than λ*
- • *Further investigations found*
	- – *Reduced surface current in the outer layers (boundary and continuity conditions) Md Asaduzzman WEIXA01*
	- *The boundary of two SCs introduces a* **force that pushes a vortex to the direction of the material with larger penetration depth.**
		- • *These features do not require insulating layers. An SS bilayer system can be used to test these predictions and potentially enable larger* E_{acc}
- • *Low temperature baking changes the mean free path and therefore the penetration depth potentially forming an effective bilayer system.*

Low temperature baking

Larger Accelerating Gradients through Heterostructure s

- • *The multilayer approach has been proposed in 2006 by A. Gurevich*
	- *No thermodynamically stable parallel vortices in decoupled S layers thinner than λ*
- • *Further investigations found*
	- *Reduced surface current in the outer layers (boundary and continuity conditions) Md Asaduzzman WEIXA01*
	- *The boundary of two SCs introduces a* **force that pushes a vortex to the direction of the material with larger penetration depth.**
		- • *These features do not require insulating layers. An SS bilayer system can be used to test these predictions and potentially enable larger* E_{acc}
- • *Low temperature baking changes the mean free path and therefore the penetration depth potentially forming an effective bilayer system.*

Bilayer superconductors can potentially enable larger Eaccand be used to test general features of heterostructures

SIS-Multilayer

SS-Bilayer

Low temperature baking

- • *Consider vortex at the SC/vacuum boundary*
	- *Magnetic field parallel to the surface creates force that pushes vortex inwards*
	- *Flux from this vortex has to vanish at the SC/vacuum interface Image vortex Force towards vacuum (Bean-Livingston barrier)*
- *For λ>λ 0 there is a second energy barrier at the interface between the layer and the substrate which pushes the vortex outwards*
	- *This force is independent of layer thickness*

- • *Consider vortex at the SC/vacuum boundary*
	- *Magnetic field parallel to the surface creates force that pushes vortex inwards*
	- *Flux from this vortex has to vanish at the SC/vacuum interface Image vortex Force towards vacuum (Bean-Livingston barrier)*
- *For λ>λ 0 there is a second energy barrier at the interface between the layer and the substrate which pushes the vortex outwards*
	- *This force is independent of layer thickness*

- • *Consider vortex at the SC/vacuum boundary*
	- *Magnetic field parallel to the surface creates force that pushes vortex inwards*
	- *Flux from this vortex has to vanish at the SC/vacuum interface Image vortex Force towards vacuum (Bean-Livingston barrier)*
- *For λ>λ 0 there is a second energy barrier at the interface between the layer and the substrate which pushes the vortex outwards*
	- *This force is independent of layer thickness*

- • *Consider vortex at the SC/vacuum boundary*
	- *Magnetic field parallel to the surface creates force that pushes vortex inwards*
	- *Flux from this vortex has to vanish at the SC/vacuum interface Image vortex Force towards vacuum (Bean-Livingston barrier)*
- *For λ>λ 0 there is a second energy barrier at the interface between the layer and the substrate which pushes the vortex outwards*
	- *This force is independent of layer thickness*

- • *Consider vortex at the SC/vacuum boundary*
	- *Magnetic field parallel to the surface creates force that pushes vortex inwards*
	- *Flux from this vortex has to vanish at the SC/vacuum interface Image vortex Force towards vacuum (Bean-Livingston barrier)*
- *For λ>λ 0 there is a second energy barrier at the interface between the layer and the substrate which pushes the vortex outwards*
	- *This force is independent of layer thickness*

- • *Consider vortex at the SC/vacuum boundary*
	- *Magnetic field parallel to the surface creates force that pushes vortex inwards*
	- *Flux from this vortex has to vanish at the SC/vacuum interface Image vortex Force towards vacuum (Bean-Livingston barrier)*
- *For λ>λ 0 there is a second energy barrier at the interface between the layer and the substrate which pushes the vortex outwards*
	- *This force is independent of layer thickness*

Prediction: Surface Bean Livingston barrier H_{vp} = H_{sh,layer} Interface barrier $H_{vp} = H_{sh,substrate}$

Review Coated Niobium - First Flux Entry

- •*Muon Spin Rotation can measure H*_{vn}
	- •*The fraction of implanted muons in field free region is probed*
	- •*Localized beam with mean implantation depth 130µm*
- •*Nb3Sn and MgB2 with 50-2000nm thickness on Nb and 120°C baked Nb tested*

T. Junginger, R.E Laxdal and W.Wasserman Superconductor Science and Technology 30 (12), 125012

Review Coated Niobium - First Flux Entry

- *Muon Spin Rotation can measure Hvp*
	- •*The fraction of implanted muons in field free region is probed*
	- •*Localized beam with mean implantation depth 130µm*
- •*Nb3Sn and MgB2 with 50-2000nm thickness on Nb and 120°C baked Nb tested*

T. Junginger, R.E Laxdal and W.Wasserman Superconductor Science and Technology 30 (12), 125012

Review Coated Niobium - First Flux Entry

- *Muon Spin Rotation can measure Hvp*
	- •*The fraction of implanted muons in field free region is probed*
	- •*Localized beam with mean implantation depth 130µm*
- •*Nb3Sn and MgB2 with 50-2000nm thickness on Nb and 120°C baked Nb tested*

• **Can LTB niobium actually be considered as a bilayer?**

T. Junginger, R.E Laxdal and W.Wasserman Superconductor Science and Technology 30 (12), 125012

muSR with variable implantation depth

Experiment: *Silver foils are used to vary the mean implantation depth <z>* **Predicted Outcome:** *In case of surface pinning the apparent H*_{vn} should *apparent Hvp should decrease with lower <z>. In case of an interface barrier Hvp should be independent of <z>*

muSR with variable implantation depth

Experiment: *Silver foils are used to vary the mean implantation depth <z>* **Predicted Outcome:** *In case of surface pinning the apparent H*_{vn} should *apparent Hvp should decrease with lower <z>. In case of an interface barrier Hvp should be independent of <z>*

barrier for bilayers and surface pinning for LTB, see Md Asaduzzaman SUSPB002

& TRIUMF

Magnetometry (LTB)

- *Magnetometry with fully annealed (1400°C)* Moment (emu) $_{\circ}$ Moment (en *ellipsoids allows for accurate Hvp measurements* – *No edge effect* – *very weak bulk pinning* -2000 -1000 • **Magnetometry suggests that LTB does**
- not affect H_{vp}
- *LTB changes the surface pinning*
- • *Consistent with muSRresults*

Turner, D.A., Burt, G. and Junginger, T., 2022. Scientific Reports, 12(1), p.5522.

Magnetic Screening & TRIUMF

Low energy muSR is used to probe the magnetic screening as a function of depth within the London layer

Bare niobium is well described by a London decay. A refined analysis finds λ consistent with literature. Non-local effects are insignificant.

120°C baking increases the London penetration depth but no bipartite screening is observed. The data can be well fitted with a single valued λ

NbTiN on Nb shows a clear bipartite screening profile as expected for a bilayer. Md. Asaduzzman WEIXA01

RML McFadden et al. - PHYS. REV. APPLIED 19, 044018 (2023) Md Assaduzzaman et al. -arXiv:2304.09360

Magnetic Screening & TRIUMF

Low energy muSR is used to probe the magnetic screening as a function of depth within the London layer

Bare niobium is well described by a London decay. A refined analysis finds λ consistent with literature. Non-local effects are insignificant.

120°C baking increases the London penetration depth but no bipartite screening is observed. The data can be well fitted with a single valued λ

NbTiN on Nb shows a clear bipartite screening profile as expected for a bilayer. Md. Asaduzzman WEIXA01

RML McFadden et al. - PHYS. REV. APPLIED 19, 044018 (2023) Md Assaduzzaman et al. -arXiv:2304.09360

Bipartite Meissner screening for bilayer samples but not for LTB

Magnetic screening profile in London layer

Reanalysis of data from Romanenko et al. data does not confirm a change in Meissner screening for 120°C baked niobium around 60nm depth

- •*Single exponential London decay (no need to account for non-local effects) gives excellent fit*
- • *Large dead layer suggests that the change in screening appears gradual at lower depth*
	- •*Consistent with HF rinsing (nano-removal) and SIMS studies*
- • **Potential reason for discrepancy:** *Short penetration length in niobium results in a wide range of fields probed for each energy Strong damping of the muSR signal and only very few oscillations are well resolved* **Analysis of niobium LE-muSR data for relatively large implantation depth in the Meissner state is particularly challenging**

Summary

- • *Low temperature baked niobium cannot be considered as an effective bilayer. Unlike for actual bilayers DC experiments find*
	- *No bipartite magnetic screening profile*
	- $-$ *No* $H_{\mathsf{v}p}$ *enhancement above* H_{c1}
- *Our experiments cannot explain why some Nb SRF cavities (LTB, N-infusion) perform above* H_{c1}
	- *This seems to be specific to RF operation, e.g. vortex nucleation time*
- • *New muSR experiments further confirm that a layer of a superconductor with a larger London penetration depth on niobium can push the* **DC** *field of first vortex penetration from Hc1 to Hsh*
	- *For SRF application this layer needs to be thinner than its London penetration depth and remain flux free*
	- *While this sounds promising actual RF performance of heterostructures generally lag behind Nb cavity performance*

Upcoming betaNMR experiment

- *RF performance of heterostructures generally lags behind Nb cavities*
	- *Early flux penetration into overlayer?*
- *With betaNMR we are able to detect penetration of magnetic flux with nanometer depth resolution (E. Thoeng TUIXA04)*
- *A niobium ellipsoid has been coated using atomic layer deposition with 8nm of AlN and 46nm of NbTiN and will be tested in September*

performance compared to uncoated cavity

first vortex penetration