

Temperature Responses of Superconducting Niobium Properties in Experiment and Simulation

Presenter: Zhitao Yang Advisor: Jiankui Hao On behalf of PKU SRF team

2023.06.28

>75-100°C

 4 h - Pre-Baking
 Improve max E_{acc} effectively

►75-100°C

 4 h - Pre-Baking
 Improve max E_{acc} effectively

120-180°C

- 48 h Low Temperature Baking
- Suppress HFQS effectively
- 48 h Nitrogen Infusion
- Improve Q₀

►75-100°C

 4 h - Pre-Baking
 Improve max E_{acc} effectively

120-180°C

- 48 h Low Temperature Baking
- Suppress HFQS effectively
- 48 h Nitrogen Infusion
- Improve Q₀

- > 300-400°C
- 1-3 h Medium
 Temperature Baking
- High Q_0 and Acceptable E_{acc}

75-100°C

 4 h - Pre-Baking
 Improve max E_{acc} effectively

- 1-3 h Medium
 Temperature Baking
- High Q_0 and Acceptable E_{acc}

120-180°C

- 48 h Low Temperature Baking
- Suppress HFQS effectively
- 48 h Nitrogen Infusion
- Improve Q₀
- ▶ 800-900°C
- 3 h High Temperature Annealing
- Hydrogen degassing and Recrystallization
- 2/0, 2/6, 10/20, 20/30, 3/60, Nitrogen Doping
 - Improve Q₀

Introduction of in-situ ESEM

Heavily chemically polished baseline samples

- In-situ environmental scanning electron spectroscopy (ESEM)
- Liquid nitrogen cooling platform

300 K — 82 K — 300 K Nb-H compound Precipitation Decomposition

- Observation while cooling and heating
- First round of cooling: precipitation and scars
- Second round of cooling: repeatable scars and precipitation

Nb-H precipitation Observation

8/24/2022 HV WD Mag HFW Spot Tilt 9:01:44 AM 15.0 kV 5.7 mm 400x 0.67 mm 3.0 -2.2 °

>8

R

g) 82K BCP Improved med-T

50.0µm

Q

6/17/2022 HV WD Mag HFW Spot

15.0 kV 7.8 mm 2000s

Q

(b) 82 K EP Baseline

Q

Q

Q

2.3

Comparisons among baked samples

50.0um

EM

(h) 82K EP Improved med-T

2.3

Comparisons among baked samples

R

High-T, Medium-T, and Improved med-T can reduce Nb-H effectively

2022-11-02 09:46:18 Analysis of spectrum: Spectra from Area #1 (d) Outside EDS

z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	67.78	8.12	33.23	2.71	3.25
8	0	K	17.65	4.08	11.53	2.46	0.57
41	Nb	ĸ	14.57	2.50	55.25	8.16	0.57

2022-	11-02 09:45:18 /	Analysis of sp	pectrum: Spectra from Area	^{#1} (h) I	nside EI	DS	
z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	C	K	0.00	0.24	0.00	0.03	0.00
8	0	K	8.27	2.42	1.53	0.36	1.29
41	Nb	к	91.73	22.76	98.47	17.59	0.11

2022-11-02 09:46:18 Analysis of spectrum: Spectra from Area #1

2.4

				(d) Out	side FDS		
Z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	67.78	8.12	33.23	2.71	3.25
8	0	K	17.65	4.08	11.53	2.46	0.57
41	Nb	K	14.57	2.50	55.25	8.16	0.57

2022-	11-02 09:45:18 4	Analysis of sp	ectrum: Spectra from Area	^{#1} (h) I	nside EI	DS	
z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	p.00	0.24	0.00	0.03	0.00
8	0	ĸ	8.27	2.42	1.53	0.36	1.29
41	Nb	K	91.73	22.76	98.47	17.59	0.11

Out side O:Nb>1, C:O>1

0

2022-11-02 09:46:18 Analysis of spectrum: Spectra from Area #1

				(d) Oute	ido FDS		
z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	67.78	8.12	33.23	2.71	3.25
8	0	K	17.65	4.08	11.53	2.46	0.57
41	Nb	K	14.57	2.50	55.25	8.16	0.57

2022-:	11-02 09:45:18	Analysis of sp	ectrum: Spectra from Area	^{#1} (h) I	nside EI	DS	
Z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	jp.00	0.24	0.00	0.03	0.00
8	0	ĸ	8.27	2.42	1.53	0.36	1.29
41	Nb	к	91.73	22.76	98.47	17.59	0.11

Z022:11-02:09:46:18 Analysis of spectrum: Spectra from Area 81 COULTSIDE EDDS Z Bennent Framby Momin Fraction (%) Mass Fraction (%) Mass Fraction (%) Fit error (%) 8 IO IV 17.26 Hate 11.33 12.74 13.23 8 IO IK 17.26 Hate 11.33 12.46 16.37 41 Neb IK 14.57 12.50 15.23 16.16 16.37

(e) Inside	(f) Inside Nb	[•] (g) Inside O
ΠΑΑDΓ		
5 nm	5 nm	<u>5 mm</u>

2022-	11-02 09:45:18 /	Analysis of sp	ectrum: Spectra from Area	^{#1} (h) I	nside EI	DS	
z	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	0.00	0.24	0.00	0.03	0.00
8	0	ĸ	8.27	2.42	1.53	0.36	1.29
41	Nb	К	91.73	22.76	98.47	17.59	0.11

Out side O:Nb>1, C:O>1

Z022-11-02.09.4618 Analysis of spectrum: Spectra from Ares #1 Atomic trare f%) Mass Fraction (%) Mass Fraction (%) Fit error (%) Z Bennent Family Atomic fraction (%) Atomic trare f%) Mass Fraction (%) Mass Fraction (%) Fit error (%)

(e) Inside	(f) Inside Nb	[•] (g) Inside O
ΠΑΑΟΓ		

2022-11-02 09:45:18 Analysis of spectrum: Spectra from Area #1

z	Element	Family	Atomic Fraction (%)	Atomic (h) [ns]	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	0.00	0.24	0.00	0.03	0.00
8	0	ĸ	8.27	2.42	1.53	0.36	1.29
41	Nb	к	91.73	22.76	98.47	17.59	0.11

Out side O:Nb>1, C:O>1

Z022-11-02 094618 Analysis of spectrum: Spectra from Aces 81 Call Outsside EDDS Z Bennent Family Atomic Fraction (%) Mass Fraction (%) Mass Fraction (%) B C K 17.78 B.22 132.23 2.37 B O K 17.75 B.42 11.32 2.40 0.57 L1 Nb K B4.57 2.50 152.25 B.16 0.57

2022-11-02 09:45:18 Analysis of spectrum: Spectra from Area #1

z	Element	Family	Atomic Fraction (%)	Atomic Krov(%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
6	c	K	0.00	0.24	0.00	0.03	0.00
8	0	K	8.27	2.42	1.53	0.36	1.29
41	Nb	К	91.73	22.76	98.47	17.59	0.11

Out side O:Nb>1, C:O>1

Inside O:Nb<<1, C:O \cong 0

Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%
c	K	67.78	8.12	33.23	2.71	3.25
lo	ĸ	17.65	4.08	11.53	2.46	0.57
İNb	ik 🛛	14.57	2.50	55.25	8.16	0.57

	Element	Family	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit error (%)
5	c	K	0.00	0.24	0.00	0.03	0.00
E.	0	JK	8.27	2.42	1.53	0.36	1.29
1	Nb	K	91.73	22.76	98.47	17.59	

- Out side O:Nb>1, C:O>1
- Inside O:Nb<<1, C:O \cong 0
- Protection layer, Nb-O

compounds, suppress the

release of Hydrogen

- Inevitable adventitious carbon
- Interstitial O/C sources during baking

Introduction of in-situ ARXPS

- Heavily chemically polished baseline samples
- In-situ angular resolved X-ray photoelectron spectroscopy (ARXPS): the larger the detection angle, the shallower the detection depth
- Baking chamber is separated from measurement chamber for high vacuum detection, quasi in-situ with accurate movement
- Raising from room temperature to 800°C with the gradient of 100°C, baking and measuring
- Focus on the peaks of Nb (mainly Nb-O compounds) and C (adventitious carbon and Nb-C compounds)

▶2

3.4

Temperature response of Nb-O (c) 400°C 1 h

(a) 100-800°C

3.1

3.≮

(e) 28°C N-O 16 h

(a) 100-800°C

- C=O/ O=C-O/

>>3

13

(a) 100-800°C

(a) 100-800°C

>>3

13

(a) 100-800°C

13

(a) 100-800°C

Temperature response of C

(b) 25°C

(d) 800°C 3 h

>3

Temperature response of C

(a) 100-800°C

Temperature response of C

(d) 800°C 3 h

3

- Surface-Higher valence Nb
- Inner-Lower valence Nb

(a) 25, 400, 800°C - Nb Peaks

(b) 25, 400, 800°C - C Peaks

- Surface-Higher valence Nb
- Inner-Lower valence Nb

(a) 25, 400, 800°C - Nb Peaks

(b) 25, 400, 800°C - C Peaks

- Surface-Higher valence Nb
- Inner-Lower valence Nb

Inner-Nb-C Compound

Surface-Adventitious C

(a) 25, 400, 800°C - Nb Peaks

(b) 25, 400, 800°C - C Peaks

- Surface-Higher valence Nb
- Inner-Lower valence Nb

Inner-Nb-C Compound

Surface-Adventitious C

▶5

≯5

\$5

TOF-SIMS results

 10^{0}

Before and after baking

≯5

C: C, NbC, NbC₂
 O: O, Nb₂O₅, NbO₂, NbO

\$5

-5

 10^{4}

10²

 10^{0}

10⁻²

 10^{-4}

0

Relative Signal Intensity of H7/Nb7

TOF-SIMS results Before and after baking

-5

\$5

C: C, NbC, NbC₂
O: O, Nb₂O₅, NbO₂, NbO
H: H, NbH

- C: C, NbC, NbC₂
- O: O, Nb₂O₅, NbO₂, NbO
- P H: H, NbH
- Fine grain: $C \rightarrow$, $O \rightarrow$, $H \rightarrow$

+5

₽5

- C: C, NbC, NbC₂
- O: O, Nb₂O₅, NbO₂, NbO
- P H: H, NbH
- Fine grain: $C \rightarrow$, $O \rightarrow$, $H \rightarrow$
- Large Grain: C↓, O→, H↑

Interaction among interstitial atoms **WEPWB084**

Interaction among interstitial atoms

First principles calculation & Density Function Theory

First principles calculation & Density Function Theory

Interaction among interstitial atoms **WEPWB084**

First principles calculation & Density Function Theory

Interaction among interstitial atoms

First principles calculation & Density Function Theory

Interaction among interstitial atoms

First principles calculation & Density Function Theory

- Free Energy (eV)
 - -89905.0 - -89906.0
 - -89907.0
 - -89908.0
 - -89909.0
 - -89910.0
 - -89911.0
 - -89912.0
 - -89913.0
 - -89914.0
 - -89915.0

Interaction among interstitial atoms

First principles calculation & Density Function Theory

Interaction among interstitial atoms

Interaction among interstitial atoms

First principles calculation & Density Function Theory

Interaction among interstitial atoms

First principles calculation & Density Function Theory Most stable positions: H-Tetrahedral sites,

C/N/O-Octahedral sites

Interaction among interstitial atoms

First principles calculation & Density Function Theory

- Most stable positions: H-Tetrahedral sites, C/N/O-
 - Octahedral sites
- C/N/O reduce the most stable sites of H, so as to diffusion routes of H

Interaction among interstitial atoms

\$8
Interaction among

(a) Nb-C-H

Interaction among interstitial а**tрумъ-о-н**

12

\$ 60 -5 40.

eV) 80

Energy (eV)

20

25

\$8

(a) Nb-C-H

(a) Nb-C-H

(a) Nb-C-H

(c) Nb-N-H

>>8

\$8

Energy (eV

- Nb-C, Nb-O, Nb-N, Nb-H Chemical Bonds
- C/N/O cannot destroy but slightly move Nb-H bond
- C/N/O/H can only slightly change DOS of Nb

>9

- C/N/O/H can attract free electron of Nb
- C/N/O have stronger attractive effects of electron than H
- C have similar interaction with H as N and O in the aspects of stable sites of H, Nb DOS and system electron density

Interaction between vacancy and C/N/O/H Electron density wepwb084

Lowest Energy Structure Nb-V-C-H Lowest Energy Structure Nb-V-N/O-H

(b)

Electron density Nb-V-C-H Electron density Nb-V-N-H Electron density Nb-V-O-H

Interaction between vacancy and C/N/O/H Electron density wepwb084

Lowest Energy Structure Nb-V-C-H

Lowest Energy Structure Nb-V-N/O-H

- In the lowest energy structure Nb-V-C-H, H locates at a tetrahedral site near the vacancy, similarly to the situation without vacancy.
- In the lowest energy structure Nb-V-N-H and Nb-V-O-H, H locates at the octahedral site near the vacancy

Electron density Nb-V-C-H Electron density Nb-V-N-H Electron density Nb-V-O-H

Interaction between vacancy and C/N/O/H

4.₹

Q 1

Note: '?' means that the peaks are so close to the Fermi surface that one cannot deduct the background signal properly.

Summary

23

$A \longrightarrow B \longrightarrow C \longrightarrow D \longrightarrow E$

800°C decompose Nb-O and Nb-C, only pure Nb left

Summary

400°C can decompose Nb-O and form Nb-C compounds, maybe Cdoping effect

F

Future work

Future work

Experiment

- In-situ ARPES experiment on superconducting niobium: observe the baking temperature responses of the electron pair behavior in momentum space
- Medium temperature baking of Niobium cavity with more accurate temperature controlling and preoxidization (WEPWB045)

Future work

94

Experiment

- In-situ ARPES experiment on superconducting niobium: observe the baking temperature responses of the electron pair behavior in momentum space
- Medium temperature baking of Niobium cavity with more accurate temperature controlling and preoxidization (WEPWB045)

Simulation

- Interaction among vacancy, dislocation and grain boundaries
- Temperature responses of the interaction between interstitial C/N/O and H
- Temperature responses of the interaction between vacancy and H
- Nb-H precipitation, cooling

FOREVER MEMORY

Thanks for your attention

七京大学

PEKING UNIVERSITY