Surface engineering by Atomic Layer Deposition for SRF cavities

Yasmine Kalboussi¹, Claire Antoine¹, Aurélien four¹, Baptiste Delatte¹, Frédérique Miserque², Diana Dragoe³, David Longuevergne⁴, Thierry pepin donat⁴, Sarra Bira⁵, Sandrine Tusseau-Nenez⁶, Yunlin Zheng⁷, David Hrabovsky⁸, Aurélie Gentils⁹, Stéphanie Jublot Leclerc⁹, Mohamed Belhaj¹⁰, Tobias Junginger¹¹, Jocelyne Leroy¹², Thomas Proslier¹.

¹IRFU, CEA Paris-Saclay University; ²LECA, CEA Paris-Saclay University; ³Plateforme ICMMO, Paris-Saclay University; ⁴IJCLab, CNRS, Paris-Saclay University, ⁵Jefferson laboratory; ⁶ Plateforme DIFFRAX, Ecole Polytechnique; ⁷INSP, CNRS, Sorbonne University; ⁸Plateforme MPBT, Sorbonne University; ⁹ Plateforme MOSAIC, IJClab Paris-Saclay University; ¹⁰ DPHY, ONERA; ¹¹University of Victoria, ¹²LICSEN, CEA Paris-Saclay University;

- At CEA, we are trying to improve the performances of niobium cavities by tayloring their inner surface using the technique of atomic layer deposition:
- I. Changing the nature of oxide layer and studying their impact on high and low fied performances.

- At CEA, we are trying to improve the performances of niobium cavities by tayloring their inner surface using the technique of atomic layer deposition:
- I. Changing the nature of oxide layer and studying their impact on high and low fied performances.
- II. Tuning the secondary emission yield of the surface.

- At CEA, we are trying to improve the performances of niobium cavities by tayloring their inner surface using the technique of atomic layer deposition:
- I. Changing the nature of oxide layer and studying their impact on high and low fied performances.
- II. Tuning the secondary emission yield of the surface.
- III. Doping Niobium cavities.

- At CEA, we are trying to improve the performances of niobium cavities by tayloring their inner surface using the technique of atomic layer deposition:
- I. Changing the nature of oxide layer and studying their impact on high and low fied performances.
- II. Tuning the secondary emission yield of the surface.
- III. Doping Niobium cavities.
- IV. Using a multilayer structure to screen the magnetic field seen by Niobium.

New ALD system for cavity coating at CEA

- High vacuum oven:
 - 650°C 10⁻⁶ mbar / 900°C 1bar $\mathrm{N_2}$
 - Volume retort: Φ = 49 cm, L= 110 cm (1.3, 0.7 GHz cavities)
- <u>ALD system</u>:
 - 9 precursor lines (2 gases, 2 liquids, 4 solids, 1 Ultra high temp).
 - RGA synthesis monitoring.

Back

Interface and control:

- Labview program of ALD system and Oven.

- Automatic synthesis parameter control (overnight dep.) and monitoring.

New ALD system for cavity coating at CEA

- High vacuum oven:
 - 650°C 10⁻⁶ mbar / 900°C 1bar $\mathrm{N_2}$
 - Volume retort: Φ = 49 cm, L= 110 cm (1.3, 0.7 GHz cavities)

Part I:

Enhancement of niobium superconductivity through the use of ALD-oxides

To replace niobium native oxides with ALD-deposited protective layer [1]

- 1) Deposit ~ 10 nm oxide layer by ALD (AI_2O_3 , Y_2O_3 and MgO) onto Niobium.
- 2) Perfom a subsequent thermal treatement to dissolve niobium native oxide underneath (vacuum levels 10⁻⁶ mbar)

[1] T. Proslier et al . Improvement and protection of niobium surface superconductivity by atomic layer deposition and heat treatment. Applied Physics Letters, 93(19):192504, November 2008

Thermal stability of niobium oxides Vs Al₂O₃

\bigcirc Low field behaviour of the Al₂O₃ coated 1.3 GHz Nb cavities

First experiment

Second experiment

 The 10 nm Al₂O₃ film + annealing significantly improves the quality factors of the Nb cavity in the low field regime.

\bigcirc RF tests on the Al₂O₃ coated 1.3 GHz Nb cavities

- The 10 nm Al₂O₃ coating improves the quality factors of the niobium cavity.
- The presence of multipacting barriers at 18 MV/m.

Part II:

Multipacting mitigation in RF cavities

SEY measurements on the TiN-Al₂O₃ samples

 We tested increasingly thicker TiN films (by increasing the number of TiN ALD cycles) deposited on 10 nm of Al₂O₃.

> There is a window of 30 - 50 cycles where the SEY is low and the TiN film resistance is high.

- The 30 50 cycles of TiN corresponds to thickness of 1 to 2 nm.
- XPS revealed a strong presence of TiO₂ in these ultra thin TiN films.

RF test of the TiN thin film on 1.3 GHz Niobium cavitiy

The quality factor is lower but the 1.5 nm (40 cycles) thick TiN film is effective as a multipacting mitigation layer.

Part III:

Doping SRF cavities

ALD approach for doping cavities

ALD synthesis: NbN, TiN, ZrN, AlN, MgO, AI_2O_3 , Y_2O_3 ...

- 1) Well controled and uniform quantity of dopant.
- 2) Induce O/N dopant in Nb but keep the metallic ions on the surface.
- 3) Avoid chemistry step ?

We tested four nitrides layer: NbN, TiN, ZrN and AlN

Niobium nitride

No nitrogen detected by XPS at the surface.

Niobium nitride

Doping levels comparable to observed at Fermilab without electropolishing .

Test on 1.3 GHz Nb cavity

• The cavity was coated with 5 nm of NbN + annealing at 900°C-3 hours in vacuum.

- The cavity was coated with 5 nm of NbN + annealing at 900°C-3 hours.
- No electro-polishing have been preformed.

Yasmine Kalboussi - SRF 2023

Zirconium nitride

• No nitrogen detected by XPS at the surface.

5 nm of ZrN + annealing 900°C- 3 Hrs - UHV

The Nb is well passivated with a ZrO₂ layer.

Part IV: ALD-depositied multilayer to improve the superconducting performances of SRF cavities

Multilayer structure

- A theoretical approach proposed by A. Gurevich (2006) to improve RF cavities through depositing a superconducting multilayer to screen the magnetic field.
- The thickness of the superconductor must be lower than its penetration depth.
- The superconducting layer must have higher T_c than Nb.

NbTiN – AIN bilayer

- NbTiN has good superconducting performances (T_c = 17 K) and a low resisitivity.
- AIN is a good dielectric layer and has a good chemical stability.
 Chemistry: Thermal ALD @ 450°C
- > AIN was deposited using A/CI_3 + NH₃
- NbTiN was deposited using a combinaison of TiN and NbN cycles n (TiCl₄ + NH₃) + m (NbCl₅ + NH₃) = Nb_{1-x}Ti_xN

Chemical composition

Critical temperature of NbTiN films

Cea

NbTiN film cristalline structures

GIXRD patterns of ALD films

> NbTiN films are a combination of TiN and Nb₄N₅ which results in Nitrogen rich NbTiN films with smaller lattice constants than reported.

Cea Testing thermal treatements on NbTiN-AIN bilayers

To enhance the superconducting performances of NbTiN films, several thermal treatments have been tested. The best results on Nb coated samples were obtained with:

- A first ramp of 6 °C/ minute up to 800°C
- A second ramp of 18°C/minute up to 900°C

Yasmine Kalboussi - SRF 2023

Cea Critical field enhancement on Niobium ellipsoid

> The Niobium ellipsoid was coated and annealed with the optimized NbTiN-AIN bilayer recipe.

Demagnetisation factor N=0.13

$$H_{equator} = \frac{H_{applied}}{1-N}$$

Before After University of Victoria

 The first vortex penetration field is enhanced by 30 mT after bilayer coating.

First RF tests of NbTiN-AIN bilayer on 1.3 GHz Nb cavity

The Niobium cavity was coated with the optimized AIN- NbTiN bilayer recipe .

- Coating had a bright golden and uniform colour.
- The cavity was annealed @ 900°C.
- Vacuum degradation during the annealing step on the first test. (P>10⁻⁵ mbar)
- Observed delamination in the beam tubes after annealing.
- A degassing step is necessary.

Cea First RF tests of NbTiN-AIN bilayer on 1.3 GHz Nb cavity

The Niobium cavity was coated with AIN (7 nm) – NbTiN (50 nm) bilayer.

> More investigations are ongoing ($Q_0 vs T$) ...

Thermal treatment multilayer 2: IJClab

Summary

- We manage to deposit uniformly a thin film of Alumina and reduce drastically niobium native oxides.
- ✓ Significant improvement of the Q₀ under low Fields.
- Proof of multipacting mitigation in SRF cavity using ALD-deposited TiN film.
- Interesting results with N-doping using ALD-deposited NbN films as dopant source.
- ✓ First tests of S-I-S structure on 1.3 GHz Nb cavity.

For more details

Yasmine Kalboussi. Nano hetero-structures for improving performances of superconductors under high fields. Materials Science [cond-mat.mtrl-sci]. Université Paris-Saclay, 2023. English. <u>(NNT : 2023UPASP029)</u> (tel-04116992)

Thank you for your attention

Questions?

Ackowledgements: RF measurements – M. Baudrier, L. Maurice; Cavity preparation: G. Jullien, F. Eozenou; Technical assistance: G. Monnereau, T. Vacher.

Back up

An ALD cycle is composed of four steps

1. Pulse of precursor 1, enabling the first gas surface reaction.

An ALD cycle is composed of four steps

1. Pulse of precursor 1, enabling the first gas surface reaction.

An ALD cycle is composed of four steps

- 1. Pulse of precursor 1, enabling the first gas surface reaction.
- 2. Purge of precursor 1, enabling the evacuation of the excess of precursor 1 and the by-products.

An ALD cycle is composed of four steps

- 1. Pulse of precursor 1, enabling the first gas surface reaction.
- 2. Purge of precursor 1, enabling the evacuation of the excess of precursor 1 and the by-products.
- 3. Pulse of precursor 2, enabling the second gas-surface reaction.

An ALD cycle is composed of four steps

- 1. Pulse of precursor 1, enabling the first gas surface reaction.
- 2. Purge of precursor 1, enabling the evacuation of the excess of precursor 1 and the by-products.
- 3. Pulse of precursor 2, enabling the second gas-surface reaction.

An ALD cycle is composed of four steps

- 1. Pulse of precursor 1, enabling the first gas surface reaction.
- 2. Purge of precursor 1, enabling the evacuation of the excess of precursor 1 and the by-products.
- 3. Pulse of precursor 2, enabling the second gas-surface reaction.
- 4. Purge of precursor 2, enabling the evacuation of the excess of precursor 2 and the by-products.

One monolayer of the film is deposited after each cycle.