Experimental Evidence for Current Suppression in Superconducting Heterostructures

Md Asaduzzaman (Asad)

Ph.D. Candidate

Department of Physics & Astronomy, University of Victoria, BC, Canada

TRIUMF, BC, Canada

Condensed Matter > Superconductivity

[Submitted on 19 Apr 2023]

Direct measurement of the Meissner screening profile in superconductor-superconductor bilayers using low-energy muon spin rotation

Md Asaduzzaman, Ryan M.L.McFadden, Anne-Marie Valente-Feliciano, David R. Beverstock, Andreas Suter, Zaher Salman, Thomas Prokscha, Tobias Junginger

https://arxiv.org/abs/2304.09360

< □ > < 同 > < 臣 > < 臣 > 王目 < つへの

Motivation

- Experimental evaluation of Meissner current suppression (due to a counter-current flow) in superconductor-superconductor (SS) bilayers to overcome Nb's fundamental field limits.
- Measurement of microscopic properties of layered superconductors (Using direct observation of depth resolved magnetic field profile)
 - Low energy muon spin rotation (LE μ -SR) technique
- Experimental results
- Summary ۲

Maximum field in the Meissner state of a semi-infinite superconductor?

- In a type-II superconductor Meissner state can persist as a metastable state up to a maximum field above B_{c1} named by superheating field (B_{sh}).
- Superheating field (B_{sh}) at $T \ll T_c$:

$$B_{\rm sh} \propto B_{\rm c} \propto J_{\rm max}$$

Here, J_{max} is the maximum screening current that can withstand against vortex penetration.

Magnetization response of a type-II superconductor

University

% TRIUMF

SRF 2023

Counter current flow modifies the Meissner screening profile in SS bilayers

 $\bullet\,$ The surface current is reduced in the $Nb_{1-x}Ti_xN$ layer due to the counter current flow in the Nb layer.

Illustration of field screening with different screening model in an SS bilayer.

How max B_0 can go in the Meissner state in an SS bilayer?

- B_{max} increased in the substrate layer because it needs to be attenuated while reaching at the SS interface.
- In the surface layer B_{max} increased due to the counter current flow in the substrate layer.

The prediction of maximum applied field, B_{max} in an SS bialyer as a function of surface layer thickness (d_s) .

5

B_{max} in SS bilayer

1.4

Measurement of a depth-resolved field profile using $LE\mu$ -SR

P(t=0)

Sample

Principle of a muon spin rotation (μ -SR) technique in an externally applied transverse magnetic field (B_{ext}).

P(t)

Positron

counter

 $\omega_{\mu} = \gamma_{\mu} B_{local}$ ($\gamma_{\mu} = 851.59 \text{ MHz/T}$)

Bext

• Frequency ----- Average local magnetic field

Muon

counter

(start signal)

Damping rate \rightarrow The width of the magnetic field distribution ۲

Positron

counter

• In case of LE μ -SR, a range of implantation energies (~2 keV-~30 keV) of μ^+ were used, providing depth-resolution on the nm scale (i.e., ~10 nm-~150 nm).

asad |WEIXA01

SRF 2023

June 28, 2023

University

of Victoria

P Bakule et al. (2004)

RIUMF

$LE\mu$ -SR has depth resolution over the Meissner screening profile

 μ^+ stopping profile in Nb_{1-x}Ti_xN (50 nm)/Nb SS structure simulated using the Monte Carlo code TRIM.SP.

• LE μ -SR has depth resolution and can thus measure the depth dependent field profile

Results: $LE\mu$ -SR time spectra in the Meissner state in SS bilayers

- Time spectra, $A(t) = A_0 P(t)$ in Nb_{1-x}Ti_xN (50 nm)/Nb at $B_0 = 25$ mT in the Meissner state.
- The asymmetry signal is more strongly damped at high implantation energies in SS bilayers.

asad |WEIXA01

Does the counter current flow model validate the value of λ_{Nb_1,Ti_*N} ?

The screening profile of Nb_{1-x}Ti_xN (50 nm)/Nb fitted with different models.

Simple London model.

Counter current flow model.

Does the counter current flow model validate the value of $\lambda_{Nb_{1-x}Ti_xN}$?

The screening profile of $Nb_{1-x}Ti_xN$ (50 nm)/Nb fitted with different models.

asad |WEIXA01

June 28, 2023

10

RIUMF

Global fit to the counter current flow model with independent fit parameters

Global fit to the Meissner screening profiles as a function of energy, *E*:

• Three different thicknesses of Nb_{1-x}Ti_xN (*d*_s nm)/ Nb samples:

University

of Victoria

% TRIUMF

- $d_s = 50 \text{ nm}$
- $d_s = 80 \text{ nm}$
- $d_s = 160 \text{ nm}$
- Extracted penetration depth of Nb_{1-x}Ti_xN is at 0 K:

■ $\lambda_{Nb_{1-x}Ti_xN} = (182.5 \pm 3.1) \text{ nm}$

• $\lambda_{Nb_{1-x}Ti_xN} \rightarrow Agrees$ with the literature!

ヨトィヨ

EL OQO

 $d_{\rm s}/\lambda_{\rm s}$

= 229 mT

3.0

- $= + = (377 \pm 5) \text{ mT for } d_s = 160 \text{ nm}$
- For our Nb_{1-x}Ti_xN (d_s nm)/Nb:
 - $B_{\text{max}}^{\text{opt}} = (610 \pm 40) \text{ mT}$ corresponding to
 - $d_{s} \sim 1.14\lambda_{Nb_{1},Ti,N} = (261 \pm 14) \text{ nm}.$
- Since $d_s > \lambda_{Nb_{1-x}Ti_xN}$, multilayer superconductor with alternating interface layer are required to protect vortex penetration into the substrate layer in order to reach at $B_{\rm max}^{\rm opt}$.

(Lu) ⁵⁰⁰ 400

300

200

シック 正正 ヘビットボット クロッ June 28, 2023

12

- We used $LE\mu$ -SR to measure the Meissner screening profile into SS bilayers.
- Fits of our data to Kubo's counter current flow model yielded λ_{Nb_1} TLN in good agreement with the literature in contrast to a simple London model.
- The results from LEµ-SR imply the validity of Kubo's counter current flow model in SS bilayers and that they are a viable means of exceeding the Nb field limits.
- This result suggests strong suppression of Meissner current in the surface layer therefore multilayer with alternating insulating layers are ideal to stop vortex penetration.
- We will measure the vortex penetration field in superconducting hetero structures using (~200 mT surface parallel field) β -NMR spectrometer in order to observe a layer specific transition from Meissner to vortex state.

https://arxiv.org/abs/2304.09360

Thank You!

asad |WEIXA01

SRF 2023

ロト < 部 > < 吉 > < 吉 > 三 = のへで

14