

Electropolishing study on nitrogen-doped niobium surface

V. Chouhan SRF Conference 2023 28th June 2023

Contents

- Motivation
- Effect of temperature
- Effect of voltage
- EP process to improve the surface
- Summary

Motivation of study

Motivation:

Understand the effect of EP on the N-doped surface.

Motivation of study

Motivation:

Understand the effect of EP on the N-doped surface.

Undoped cavity surface at different EP temperatures

Cold EP makes the surface smooth with no sharp grain boundaries.

🚰 Fermilab

8/19/2023 Vijay Chouhan | Electropolishing study on nitrogen-doped niobium surface

Coupon cavity

Electropolishing of 650 MHz PIP-II cavities

Comparison with initial cathode

Parameters	Initial EP	Modified EP	
	Warm/cold EP	Warm EP	Cold EP
Voltage	18 V	~25 V	22 V
Cavity temperature	22 °C/12 °C	22 °C	12 °C
Cathode type	Cathode-I (initial)	Cathode-M (modified)	

V. Chouhan et al., Nucl. Instrum. Methods Phys. Res. A 1051 (2023) 168234

V. Chouhan et al., TUPTB041, TUPTB042 SRF2023.

I-V curves with modified cathode

Onset voltage vs cavity temperature

Electropolishing of 650 MHz PIP-II cavities

Parameters	Initial EP	Modified EP	
	Warm/cold EP	Warm EP	Cold EP
Voltage	18 V	~25 V	22 V
Cavity temperature	22 °C/12 °C	22 °C	12 °C
Cathode type	Cathode-I (initial)	Cathode-M (modified)	

V. Chouhan et al., Nucl. Instrum. Methods Phys. Res. A 1051 (2023) 168234

V. Chouhan et al., TUPTB041, TUPTB042 SRF2023.

I-V curves with modified cathode

Onset voltage vs cavity temperature

Sermilab

Comparison with initial cathode

- Low temperature maintains EP plateau at a lower voltage.
 - 650 MHz cavities require voltage higher than standard 18 V.

Electropolishing of 650 MHz PIP-II cavities

Parameters	Initial EP	Modified EP	
	Warm/cold EP	Warm EP	Cold EP
Voltage	18 V	~25 V	22 V
Cavity temperature	22 °C/12 °C	22 °C	12 °C
Cathode type	Cathode-I (initial)	Cathode-M (modified)	

V. Chouhan et al., Nucl. Instrum. Methods Phys. Res. A 1051 (2023) 168234

V. Chouhan et al., TUPTB041, TUPTB042 SRF2023.

I-V curves with modified cathode

Onset voltage vs cavity temperature

Sermilab

Comparison with initial cathode

- Low temperature maintains EP plateau at a lower voltage.
 - 650 MHz cavities require voltage higher than standard 18 V.

Performance in baseline tests (LB650 cavities)

Cavities qualified in baseline tests. Mid-T bake was applied (see poster **MOPMB030**, SRF2023)

 Initial EP
 Modified EP

V. Chouhan et al., Nucl. Instrum. Methods Phys. Res. A 1051 (2023) 168234

- Cavity B61C-EZ-103 after EP with initial conditions quenched at 15 MV/m.
- The cavities after EP with modified conditions significantly improved the E_{acc} in vertical tests.

See **TUPTB042** for details on EP of the highbeta 650 MHz cavities.

EP of N-doped surface

Fermilab

7 8/19/2023 Vijay Chouhan | Electropolishing study on nitrogen-doped niobium surface

Effect of temperature in EP

- Nb surface: 2/0 nitrogen doping
- Post-doping EP was performed for ~5 μm:
 - at Nb surface temperature ranging from 0-40 °C
 - without acid agitation
 - o at **18 V**

Effect of temperature in EP

- Nb surface: 2/0 nitrogen doping
- Post-doping EP was performed for ~5 μm:
 - at Nb surface temperature ranging from 0-40 °C
 - without acid agitation
 - o at 18 V

- Higher temperature produced more pits on the surface.
- No preferential etching of grains due nitrogen-doping.

Effect of applied voltage

- Nb surface: 2/0 nitrogen doping
- EP was performed for ~5 µm removal:
 - o at Nb surface temperature of 40 °C
 - without acid agitation
 - o at voltage ranging from 3-22 V

Effect of applied voltage

- Nb surface: 2/0 nitrogen doping
- EP was performed for ~5 µm removal:
 - at Nb surface temperature of 40 °C
 - without acid agitation
 - at voltage ranging from 3-22 V

Higher voltage produced more pits on the surface.

Bubble formation on N-doped surface during EP

There might be physical damage of the diffusion layer due to bubbles.

mm

Bubble formation on N-doped surface during EP

Bubble formation on N-doped surface during EP

The top nitride layer was responsible for the bubble formation.

Highlights

The top niobium nitride layer is responsible for pitting.

Parameters that affect the surface pitting:

- Temperature
- Applied voltage
- Acid agitation
- Cavity rotation
- HF concentration in acid (varies due to evaporation in acid mixing process)

Cold EP at temperature < 15 °C with a voltage < 18 V may reduce the risk of pitting and sharp grain boundaries. However, voltage should be above the onset voltage to avoid preferential etching of the grains.

The pitting risk may be higher for the cavities (like 650 MHz cavities) that require a higher voltage of 22–25 V for EP.
V. Chouhan et al., Nucl. Instrum. Methods Phys. Res. A 1051 (2023) 168234
V. Chouhan et al., TUPTB042, SRF2023

Highlights

The top niobium nitride layer is responsible for pitting.

Parameters that affect the surface pitting:

- Temperature
- Applied voltage
- Acid agitation
- Cavity rotation
- HF concentration in acid (varies due to evaporation in acid mixing process)

Cold EP at temperature < 15 °C with a voltage < 18 V may reduce the risk of pitting and sharp grain boundaries. However, voltage should be above the onset voltage to avoid preferential etching of the grains.

The pitting risk may be higher for the cavities (like 650 MHz cavities) that require a higher voltage of 22–25 V for EP.
 V. Chouhan et al., Nucl. Instrum. Methods Phys. Res. A 1051 (2023) 168234
 V. Chouhan et al., TUPTB042, SRF2023

Can we have a process that eliminates the risk of pitting?

Process to eliminate pitting risk

Peel-off NbN layer

Process to eliminate pitting risk

Peel-off NbN layer

How can we peel-off the top thin nitride layer?

Can we dissolve nitride layer by EP-acid soak?

Surface after EP-acid soaking for 4 h

Can we dissolve nitride layer by EP-acid soak?

Surface after EP-acid soaking for 4 h

Effect of low voltage / I-V measurement

• A dark-gray film removed from the surface in an I-V test or low voltage etching.

Effect of low voltage / I-V measurement

• A dark-gray film removed from the surface in an I-V test or low voltage etching.

Thickness of removed film ~ a few hundred nm

Microscopic and chemical study of removed film

Microscopic and chemical study of removed film

EP recipe for N-doped surface (Two-step EP)

Step 1: To peel-off the top nitride layer Step 2: To meet target removal thickness

🔁 Fermilab

Surface after two-step EP EP without I-V

-0.2

🛟 Fermilab

500

709.067

Two-step EP eliminates the risk of pitting on an N-doped surface.

Oµm

250

Summary

- The presence of a niobium nitride layer on the surface poses a risk of pit formation.
- The number of pits increases with increase in the surface temperature and voltage.
- Low-temperature EP reduce the risk of pit formation and surface roughness.
- A proper I-V scan can peel-off the nitride layer before EP is performed.
- The two-step EP (I-V and EP) could eliminate the pit formation caused by the nitride layer.

Next task:

• The two-step EP will be applied to multiple cavities to confirm the impact on the performance and yield.

Thank You

Thank You

Backup slides

Polarization curve and current profile

- N-doped and undoped samples were electropolished.
- Polarization curves were identical.
- EP current drawn from the N-doped surface was initially higher.

