Superconducting Non-Elliptical Cavities (TEM Cavity Designs)

Subashini De Silva

Center for Accelerator Science Old Dominion University

Outline

- Why Non-Elliptical Cavities?
- Electromagnetic modes
- Non-Elliptical accelerating cavities
 - Basic principles
 - Types of cavities
 - Current accelerator applications
- Non-Elliptical deflecting and crabbing cavities
 - Basic principles
 - Types of cavities
 - Current collider applications
- Design issues for non-elliptical cavities

World of Superconducting Non–Elliptical Cavities

RF Cavities of interesting shapes for particle acceleration

Half Wave Cavities

Beam port

Split Ring Resonator

Superconducting RFQ Cavity

World of Superconducting Non–Elliptical Cavities

RF Cavities of interesting shapes for deflecting and crabbing applications

Old DMINION UNIVERSITY

Electron vs Proton/Heavy Ion Acceleration

- Electrons and protons are distinctly different due to mass of the particles
 - Electrons \rightarrow 0.511 MeV/c²
 - 550 keV γ = 2.08, β = 0.88
 - 550 MeV γ = 1077, β = 1
 - Protons \rightarrow 938 MeV/c²
 - 550 keV γ = 1.0005, β = 0.032
 - 550 MeV γ = 1.59, β = 0.78
 - 550 GeV γ = 587.4, β = 1
- For heavy ions: Mass number (A) >1

$$E_{T} = KE + AE_{0}$$
$$KE = (\gamma - 1) Am_{0}c^{2}$$
$$p = \gamma\beta Am_{0}c = \frac{\gamma\beta AE_{0}}{c}$$

$$E_T = \gamma m_0 c^2 = \mathrm{KE} + E_0$$
$$\mathrm{KE} = (\gamma - 1) m_0 c^2$$

$$\beta = \sqrt{1 - \frac{1}{\gamma^2}}$$

- Protons
$$\rightarrow A = 1$$
 and $q = 1$
 $KE = qV_{eff} \cos \phi$
 $B\rho = mv = \frac{p}{q} = \frac{\gamma\beta E_0}{c}$

- Heavy ions
$$\rightarrow A > 1$$
 and q
 $KE = \frac{q}{A} V_{eff} \cos \phi$
 $B\rho = p = \frac{A}{q} \frac{\gamma \beta E_0}{c}$

Why Non-Elliptical Cavities?

- 1. To accelerate Protons/Heavy lons \rightarrow Need $\beta < 1$ ($\beta = v/c < 1$) accelerating cavities
- In accelerating electrons, all cavities are designed at $\beta=1$
- In Hadron acceleration
 - Velocity of the particle beam increases with energy
 - Depends on the synchronization of the particle bunches and rf voltage in the cavity
 - Require various types of cavities each optimized to accelerate different velocity ranges
- Elliptical cavities has intrinsic problem as β goes down
 - Due to mechanical problems, multipacting, low RF efficiency

Proton/Heavy Ion Acceleration

- Protons/Heavy lons require acceleration by many cavities to reach velocities approaching speed of light
- Cavities are designed for specific regions of velocity

Limitation on β =1 Elliptical Cavities

- Elliptical cavities have been designed for β >0.5 for cw applications and β >0.6 for pulsed high energy acceleration
- At very low β elliptical cavities start to look like bellows
 - In π mode cell-to-cell distance ~ $\beta\lambda/2$ and cavity diameter is ~ λ
 - Ratio of cavity length/diameter $\sim \beta/2$

Low rf efficiency Poor mechanical

stability

 Possibility of strong applications • Pessimistic ir

CW

strong multipacting Pessimistic in pulsed applications

Why Non-Elliptical Cavities?

2. To deflect or crab a beam

- Requires to provide a transverse kick to the beam
- Standard elliptical cavities operating in TM₀₁₀ mode only produce a longitudinal gradient
- Deflecting/crabbing cavities operate mostly at $\beta=1$
- Solution: Use of TE_{11} -like mode, TM_{11} -type mode, or TEM-type mode cavities

Applications of Non-Elliptical Cavities

Application	Maximum β	Beam	Maximum Current	Operation
Linacs for nuclear physics research	~ 0.2 (0.5)	Light & Heavy Ions	~1 <i>µ</i> A	CW
Drivers for radioactive ion beam (RIB) facilities and accelerator driven systems (ADS)	~ 0.3 – 0.9	Light & Heavy Ions	~ 0.1 – 30 mA	CW
Linacs for radioisotope production	~0.3	p, d	~ 1 – 10 mA	CW
Neutron spallation sources	~1	р	~ 10 – 100 mA	pulsed
Accelerators for material irradiation	~0.3	d	~ 100 mA	CW
Compact high eta linacs (proposed)	1	е	~ 1 mA	CW
Deflecting and crabbing applications	1	e, p	~ 1 A	CW

Applications of Non-Elliptical Cavities

- Superconducting technology allows cw and high duty cycle operation
 - Also allows increase bore (transverse acceptance) as highest shunt impedance is not essential and TEM cavities allow lower frequencies with the associated larger longitudinal acceptance
- Drivers RIB production (ISOL, fragmentation) (ions), ADS (transmutation, energy) (p, H-, d), Spallation neutron sources (p, H-)
 - Longer machines typically, large velocity swing, several cavity regimes
 - Treat as almost fixed gradient machines
 - Beam loss (halo) an issue, careful beam dynamics required, favor symmetric rather than asymmetric cavities
 - Beam loading is typically an important consideration
- Post-accelerators (Radioactive ion beam and nuclear physics) (ions)
 - Shorter machines typically, broad velocity acceptance
 - Utilize maximum cw gradient to improve performance and/or reduce cost
 - Short independently phased cavities give flexibility to beam delivery
 - Beam loading typically not an issue

Advantages of Non-Elliptical Cavities

- Traditionally low β superconducting resonators were quarter wave (or split rings) used as postaccelerators for heavy ion tandems serving the nuclear physics community (ATLAS, INFN-LNL)
- Increased interest in Radioactive Ion Beam (RIBs) has created a renaissance in low and medium β superconducting cavity development in the last 20 years for both post-accelerators and drivers – ISAC-II, NSCL-ReA, FRIB
- High duty cycle driver linacs are now being built with superconducting sections beginning at lower β values (SPIRAL-II, C-ADS, IFMIF, ESS)
 - Rise in performance of spoke cavities and half-wave resonators (HWR)
 - Shapes are being optimized for performance with more emphasis on forming
 - Clean room assembly, high pressure water rising and separated vacuum cryostats are now standard
- Spoke resonators are now being investigated at velocities at or near β =1 for compact machines
- Deflecting/crabbing cavities have seen a rise in interest due to high performance, compact designs for applications such as crabbing cavities for LHC high luminosity upgrade

Electromagnetic Fields

- Resonance cavity mode types: TM type, TE type, TEM type
- For a cylindrical geometry (Simplest form of a resonant cavity)

$$\vec{E}(x, y, z, t) = \vec{E}(x, y)e^{j(kz-\omega t)}$$
$$\vec{H}(x, y, z, t) = \vec{H}(x, y)e^{j(kz-\omega t)}$$

TM Modes

• Modes with longitudinal electric fields and no transverse magnetic fields

$$TM \text{ Modes:} \begin{cases} E_z = E_0 \cos\left(\frac{p\pi z}{L}\right) J_m\left(\frac{x_{mn}r}{R}\right) \cos(m\phi), \\ E_r = -E_0 \frac{p\pi R}{Lx_{mn}} \sin\left(\frac{p\pi z}{L}\right) J'_m\left(\frac{x_{mn}r}{R}\right) \cos(m\phi), \\ E_\phi = E_0 \frac{mp\pi R^2}{rLx_{mn}^2} \sin\left(\frac{p\pi z}{L}\right) J_m\left(\frac{x_{mn}r}{R}\right) \sin(m\phi), \\ H_z = 0, \\ H_r = jE_0 \frac{m\omega R^2}{c\eta rx_{mn}^2} \cos\left(\frac{p\pi z}{L}\right) J_m\left(\frac{x_{mn}r}{R}\right) \sin(m\phi), \\ H_\phi = jE_0 \frac{\omega R}{c\eta x_{mn}} \cos\left(\frac{p\pi z}{L}\right) J'_m\left(\frac{x_{mn}r}{R}\right) \cos(m\phi), \\ \omega_{TM_{mnp}} = c\sqrt{\left(\frac{x_{mn}c}{R}\right)^2 + \left(\frac{p\pi}{L}\right)^2} \\ \omega_{TE_{mnp}} = c\sqrt{\left(\frac{x_{mn}c}{R}\right)^2 + \left(\frac{p\pi}{L}\right)^2} \end{cases} \qquad \omega_{TE_{mnp}} = c\sqrt{\left(\frac{x_{mn}c}{R}\right)^2 + \left(\frac{p\pi}{L}\right)^2}$$

• Modes with longitudinal magnetic fields and no transvers electric fields

TE Modes

$$\mathcal{E} \operatorname{Modes:} \begin{cases} H_z = H_0 \sin\left(\frac{p\pi z}{L}\right) J_m\left(\frac{x'_{mn}r}{R}\right) \cos(m\phi) ,\\ H_r = H_0 \frac{p\pi R}{Lx'_{mn}} \cos\left(\frac{p\pi z}{L}\right) J'_m\left(\frac{x'_{mn}r}{R}\right) \cos(m\phi) ,\\ H_\phi = -H_0 \frac{mp\pi R^2}{rL(x'_{mn})^2} \cos\left(\frac{p\pi z}{L}\right) J_m\left(\frac{x'_{mn}r}{R}\right) \sin(m\phi) ,\\ E_z = 0 ,\\ E_r = jH_0 \frac{m\eta\omega R^2}{cr(x'_{mn})^2} \sin\left(\frac{p\pi z}{L}\right) J_m\left(\frac{x'_{mn}r}{R}\right) \sin(m\phi) ,\\ E_\phi = jH_0 \frac{\eta\omega R}{cx'_{mn}} \sin\left(\frac{p\pi z}{L}\right) J'_m\left(\frac{x'_{mn}r}{R}\right) \cos(m\phi) ,\\ \omega_{TE_{mnp}} = c\sqrt{\left(\frac{x'_{mn}c}{R}\right)^2 + \left(\frac{p\pi}{L}\right)^2} \end{cases}$$

Modes in a Pill Box Cavity

- TM₀₁₀
 - Electric field is purely longitudinal
 - Electric and magnetic fields have no angular dependence
 - Mode of interest for acceleration in elliptical cavities
 - Frequency depends only on radius, independent of length
- TM_{0np}
 - Monopole modes that can couple to the beam and exchange energy
- TM_{1np}
 - Dipole modes that can deflect the beam
- TE modes
 - No longitudinal E field
 - Cannot couple to the beam

SRF 2023 Tutorial – SRF Fundamental/Nb Material, Akira Miyazak

- TEM modes ightarrow For coaxial geometries
 - Transverse Electro Magnetic (TEM) mode

Coaxial Resonator (TEM Mode)

- Consider a coaxial geometry with grounded plates at the ends with inner radius *a*, outer radius *b* and length *d*
- A standing wave occurs with E_r vanishing at the end walls at z=0 and z=d
- Fields components

$$B_{\theta} = \frac{\mu_0 I_0}{\pi r} \cos \frac{p \pi z}{d} e^{j\omega t}$$
$$E_r = -2j \sqrt{\frac{\mu_0}{\varepsilon_0}} \frac{I_0}{2\pi r} \sin \frac{p \pi z}{d} e^{j\omega t}$$
where $\omega = k_z c = \frac{p \pi c}{d}$, $p = 1, 2, 3, ...$

• Peak voltage on the inner conductor is found by integrating the radial electric field between the grounded outer conductor and the inner conductor

 $\hat{V}(z) = \int_{a}^{b} E_{r}(z) dr$ $\hat{V}(z) = \sqrt{\frac{\mu_{0}}{\varepsilon_{0}}} \frac{I_{0}}{\pi} \ln\left(\frac{b}{a}\right) \sin\frac{p\pi z}{d}$

Types of Superconducting Non-Elliptical Cavities

TM Type

• Accelerating cavities

• Deflecting and crabbing cavities

Squashed elliptical cavity TM₁₁₀-like mode

TE Type

• Accelerating cavities

Deflecting and crabbing cavities ٠

Double quarter wave cavity TE₁₁-like mode **RF-dipole** cavity TE₁₁-like mode

TEM Type

Accelerating cavities ٠ **Quarter Wave Cavity**

Half Wave Cavity

- **Spoke Cavity**
- Deflecting and crabbing cavities ٠

Designing Non-Elliptical Cavities

- No universal design for any of the cavity geometries
- Has many degrees of freedom with many parameters for optimization
- May lead to complicated designs

BUT IT IS MORE FUN !!

- Non-elliptical cavities are 3D geometries
- Requires 3D simulations to optimize cavity designs
- Available simulation packages
 - ✓ CST Studio, HFSS, ACE3P Code Suite, COMSOL

NON-ELLIPTICAL ACCELERATING CAVITIES

(1) BASIC PRINCIPLES

(2) TYPES OF NON-ELLIPTICAL ACCELERATING CAVITIES

- i. TEM-Type Cavities
- ii. TM-Type Cavities

(3) DESIGN CONSIDERATIONS

BASIC PRINCIPLES OF NON-ELLIPTICAL ACCELERATING CAVITIES

RF Acceleration

- A standing wave is established in the resonator with a time varying E_z field on axis
- For a particle travelling on axis with velocity βc and sees a field that is the product of spatial variation and time modulation

$$E_{z}(z,t) = E_{z}(\rho = 0, z)\cos(\omega t + \varphi)$$

- ϕ is a constant (rf phase) that defines the time of arrival of the particle with respect to the rf time modulation
- A phase corresponds to the maximum acceleration that can be given to the particle (on crest acceleration)
- One can calculate the accelerating voltage ($V_{\rm eff}$) imparted to the particle by $_{_{\infty}}$

$$V_{eff}(\varphi) = \int_{-\infty}^{\infty} E_z(\rho = 0, z) \cos(\omega t(z) + \varphi) dz$$

Accelerating Voltage and Gradient

 $V_{eff}(\varphi) = \int_{-\infty}^{\infty} E_z(\rho = 0, z) \cos(\omega t(z) + \varphi) dz$

• Time and position are linked through the velocity (assuming β doesn't change)

$$t = \frac{z}{v} = \frac{z}{\beta c}, \quad c = f\lambda \text{ and } \omega = 2\pi f$$

$$V_{eff}(\varphi) = \int_{-\infty}^{\infty} E_z(\rho = 0, z) \cos\left(\frac{2\pi z}{\beta \lambda} + \varphi\right) dz$$

$$V_{eff}(\varphi) = \int_{-\infty}^{\infty} E_z(\rho = 0, z) \left[\cos\left(\frac{2\pi z}{\beta \lambda}\right) \cos\varphi - \sin\left(\frac{2\pi z}{\beta \lambda}\right) \sin\varphi\right] dz$$

• Since E_z is typically an even function this simplifies to

$$V_{eff}(\varphi) = \int_{-\infty}^{\infty} E_z(\rho = 0, z) \cos\left(\frac{2\pi z}{\beta \lambda}\right) dz \cos\varphi = V_c \cos\varphi$$

where $V_c = \int_{-\infty}^{\infty} E_z(\rho = 0, z) \cos\left(\frac{2\pi z}{\beta \lambda}\right) dz$

is called the accelerating voltage (also $V_c = V_{acc} = V_{eff}(0)$)

• Accelerating gradient (E_a) – Gives the effective voltage gain [MV/m]

$$E_{a} = \frac{V_{eff}}{L} \text{ where } L = n \frac{\beta_{0} \lambda}{2}, \text{ n is the number of cells}$$

where $V_{eff} = \int_{-\infty}^{\infty} E_{z}(z,t) dz$ with $\beta = \beta_{0}$ and $\varphi = 0$

• Very important to specify length in defining E_a

Energy Gain, Transit Time Factor, Velocity Acceptance

- Energy gain: $\Delta W = q \int_{-\infty}^{+\infty} E(z) \cos(\omega t + \phi) dz$ • Velocity acceptance: $\Theta = \frac{\int_{-\infty}^{\infty} E(z) \cos\left(\frac{\omega z}{\beta c}\right) dz}{\int_{-\infty}^{\infty} E(z) \cos\left(\frac{\omega z}{\beta_0 c}\right) dz}$
 - Velocity acceptance is the reduction of the energy gain associated with the time dependence of the field
 - Transit time factor: Time variation of the field during particle transit through the gap

$$T(\beta) = \frac{\int_{-\infty}^{\infty} E(z) \cos\left(\frac{\omega z}{\beta_0 c}\right) dz}{\int_{-\infty}^{\infty} E(z) dz} \begin{bmatrix} \text{Achievable} \\ \text{voltage at } \beta = \beta_0 \\ \text{Maximum} \\ \text{voltage at } \varphi = 0 \end{bmatrix}$$

• Transit time factor is the additional reduction of energy gain for particles whose velocity is different from optimal velocity (β_0)

Single Gap Structure

- For an accelerating gap with an accelerating field approximated with a square profile
- Here note that as g→0 the T→1, but small gaps cannot support high fields, so we optimize the gap
 geometry using a number of considerations

Two Gap Structure

- For a two gap with an accelerating field approximated with a square profile in the π mode
- Slower or faster particles will get less acceleration due to poor synchronization with the rf phase

Multi Gap Structures

- Larger the number of gaps (n) larger the energy gain at a given gap voltage V_{g}
- But larger the number of gaps (n), narrower the velocity acceptance
 - Constant β calls for large n
 - Fast varying β calls for small n
- Higher number of gaps will provide more energy gain over a smaller velocity range

Different Definitions of Accelerating Gradient

- Sometimes it is difficult to decide on the definition of L: I_{int} , L_{max} , $n\beta\lambda/2$
- Shorter *L* is defined, larger E_a appears in Q vs E_a curves
- However, energy gain is always the same and all definitions are constant

Important Parameters

- Parameters are the same for elliptical cavities
- Important to specify the cavity reference length in defining E_a

Avg. accelerating field	$E_a = V_g T(\beta_0)/L$	MV/m	
Stored energy	U/E_a^2	J/(MV/m)²	
Shunt impedance per meter	$R_{sh} = E_a^2 L/P$	MΩ/m	
Quality Factor	Q=ωU/P		S
Geometrical factor	$\Gamma = Q R_s$	Ω	suc
Peak electric field	E_p/E_a		tan
Peak magnetic field	B_p/E_a	mT/(MV/m)	ts
Optimum β	β_0		
Cavity length	L	m)	

where:

R_s=surface resistance of the cavity walls

P =rf power losses in the cavity, proportional to R_s

TYPES OF NON-ELLIPTICAL ACCELERATING CAVITIES

TEM-Type Cavities

- Transverse Electro Magnetic (TEM) mode cavities
 - Mode is related to the cavity symmetry axis
 - Produce accelerating voltages across the coaxial gap with variable gap distance and with transverse dimensions ~2-4 times smaller than an elliptical cavities for the same frequency
- Acceleration typically uses π mode with rf phase advance of 180 deg
 - Requires distance of $eta\lambda/2\,$ between gaps for synchronism
- Good transverse acceptance requires a large aperture efficient rf acceleration requires a gap (g) to aperture (a) ratio g/a>1 and a gap size ~50% of the cell length
 - Low velocities require low frequencies with large wavelengths
 - Low frequency cavities have large accelerating gaps

Quarter Wave Resonator (QWR)

- QWR \rightarrow A capactively loaded $\lambda/4$ transmission line
- Maximum voltage builds up on the open tip and maximum current at the plate connecting the center conductor
- Beam tube is placed near the end of the tip to produce a high voltage double gap acceleration geometry

Capacitance per unit length

Inductance per unit length

 $L = \frac{\mu_0}{2\pi} \ln\left(\frac{b}{r_0}\right) = \frac{\mu_0}{2\pi} \ln\left(\frac{1}{\rho_0}\right) \qquad \rho_0 = \frac{r_0}{h}$

Center conductor voltage Center conductor current

$$V(z) = V_0 \sin\left(\frac{2\pi}{\lambda}z\right)$$
 $I(z) = I_0 \cos\left(\frac{2\pi}{\lambda}z\right)$

Line impedance

$$Z_0 = \frac{V_0}{I_0} = \frac{\eta}{2\pi} \ln\left(\frac{1}{\rho_0}\right), \qquad \eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} \simeq 377\Omega$$

Quarter Wave Resonator (QWR)

Optimizing the expected performance of a resonator for given frequency and β

 V_p – voltage on the center conductor with outer conductor at ground

Peak Magnetic Field

 $\frac{V_p}{b} = \begin{cases} \eta & H \\ c & B \\ 300 & B \end{cases} \rho_0 \ln\left(\frac{1}{\rho_0}\right) \sin\left(\frac{\pi}{2}\zeta\right) \qquad \begin{cases} m, A/m \\ m, T \\ cm, G \end{cases}$

 V_p : Voltage across loading capacitance $B \simeq 9$ mT at 1 MV/m Geometrical Factor

$$G = QR_s = 2\pi \eta \frac{b}{\lambda} \frac{\ln(1/\rho_0)}{1+1/\rho_0}$$
$$G \propto \eta \beta$$

 $R_{\rm s}$ – surface resistance

Energy Content $U = V_p^2 \frac{\pi \varepsilon_0}{8} \lambda \frac{1}{\ln(1/\rho_0)} \frac{\zeta + \frac{1}{\pi} \sin \pi \zeta}{\sin^2 \frac{\pi}{2} \zeta}$ Power Dissipation (Ignore losses in the shorting end plate) $U = V_p^2 \frac{\pi \varepsilon_0}{8} \lambda \frac{1}{\ln(1/\rho_0)} \frac{\zeta + \frac{1}{\pi} \sin \pi \zeta}{\sin^2 \frac{\pi}{2} \zeta}$ Pever $\frac{8}{p} \frac{R_s}{\pi} \frac{\lambda}{p^2} \frac{1 + 1/\rho_0}{b} \frac{\zeta + \frac{1}{\pi} \sin \pi \zeta}{\sin^2 \frac{\pi}{2} \zeta}$ Shunt Impedance $\left(4V_p^2/P\right)$ R/Q $R_{sh} = \frac{\eta^2}{R_s} \frac{32}{\pi} \frac{b}{\lambda} \frac{\ln^2 \rho_0}{1 + 1/\rho_0} \frac{\sin^2 \frac{\pi}{2} \zeta}{\zeta + \frac{1}{\pi} \sin \pi \zeta}$ Pever $\frac{R_s}{\eta^2} E^2 \beta \lambda^2$ Pe

Half Wave Resonator (HWR)

- HWR \rightarrow A $\lambda/2$ transmission line
- Equivalent to 2 QWR facing each other and connected
- Magnetic field loop around the inner conductor with peak fields at the shorted ends
- Beam tube is placed at the center of the inner conductor to coincide with the maximum voltage
- Same accelerating voltage is obtained at about 2 times larger power in QWR ($P_{HWR} \sim 2P_{QWR}$)

Capacitance per unit length

Inductance per unit length

$$C = \frac{2\pi\varepsilon_0}{\ln\left(\frac{b}{a}\right)} = \frac{2\pi\varepsilon_0}{\ln\left(\frac{1}{\rho_0}\right)}$$

$$L = \frac{\mu_0}{2\pi} \ln\left(\frac{b}{r_0}\right) = \frac{\mu_0}{2\pi} \ln\left(\frac{1}{\rho_0}\right) \qquad \qquad \rho_0 = \frac{r_0}{b}$$

Center conductor voltage

Center conductor current

Line impedance

$$V(z) = V_0 \sin\left(\frac{2\pi}{\lambda}z\right) \qquad \qquad I(z) = I_0 \cos\left(\frac{2\pi}{\lambda}z\right) \qquad \qquad Z_0 = \frac{V_0}{I_0} = \frac{\eta}{2\pi} \ln\left(\frac{1}{\rho_0}\right), \qquad \eta = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 377\Omega$$

 $2r_0$

Half Wave Resonator (HWR)

Optimizing the expected performance of a resonator for given frequency and β V_p – voltage on the center conductor with outer conductor at ground Peak Magnetic Field Geometrical Factor Energy Content $\frac{V_p}{b} = \begin{cases} \eta & H \\ c & B \\ 300 & B \end{cases} \rho_0 \ln\left(\frac{1}{\rho_0}\right) \qquad \begin{cases} m, A/m \\ m, T \\ cm, G \end{cases}$ $G = QR_s = 2\pi \eta \frac{b}{\lambda} \frac{\ln(1/\rho_0)}{1+1/\rho_0}$ $U = V_p^2 \frac{\pi \varepsilon_0}{4} \lambda \frac{1}{\ln(1/\rho_0)}$ $U \propto \varepsilon_0 E^2 \beta^2 \lambda^3$ $G \propto \eta \beta$ $R_{\rm s}$ – surface resistance R/Q Shunt Impedance $\frac{R_{sh}}{Q} = \frac{8}{\pi^2} \eta \ln(1/\rho_0)$ $\frac{R_{sh}}{Q} \propto \eta$ $R_{sh} = \frac{\eta^2}{R_s} \frac{16}{\pi} \frac{b}{\lambda} \frac{\ln^2 \rho_0}{1 + 1/\rho_0}$

 $R_{sh} R_s \propto \eta^2 \beta$

Vp: Voltage across loading capacitance $B \simeq 9$ mT at 1 MV/m

Power Dissipation (Ignore losses in the shorting end plates)

> $P = V_p^2 \frac{16}{\pi} \frac{R_s}{\eta^2} \frac{\lambda}{b} \frac{1 + 1/\rho_0}{\ln^2 \rho_0}$ $P \propto \frac{R_s}{n^2} E^2 \beta \lambda^2$

QWR vs HWR

- QWR is the choice for low applications where a low frequency is needed
 - Requires ~50% less structure compared to HWR for same frequency
 - RF power loss is ~50% of HWR for same frequency and eta_0
 - Allows low frequency cavities with larger voltage acceptance $(R_{sh}/Q_{QWR}) = 2(R_{sh}/Q_{HWR})$
 - Asymmetric field pattern introduces vertical steering especially for light ions that increase with velocity (Avoid using for β_0 >0.2)
 - Mechanically less stable than HWR due to unsupported end
- HWR is chosen for mid velocity range (β_0 >0.2) or where steering must be eliminated (ie. High intensity light ion applications)
 - Produces 2× more rf losses for the same frequency and β_0
 - 2× longer for the same frequency
 - Symmetric field pattern and increased mechanical rigidity

Quarter Wave - QWR

Single and Multi Spoke Cavities

- Supposed to cover ranges β =0.1-0.6 with *f*=300-900 MHz
- Spoke cavities are also designed at high β and β =1
- Single spoke cavities are same as TEM-like HW cavities with respect to the spoke axis
- Single spoke geometries allow extension along the beam path to provide multipole spoke
 - In multi spoke cavity spokes are rotated 90 deg from cell to cell
 - Higher effective voltage with low velocity acceptance
 - Strong cell-to-cell coupling with cells linked by the magnetic field

HWR vs Single Spoke Cavities

- Single spoke resonator (SSR) is another variant of the half wave TEM mode cavities
- In HWR the outer conductor (with diameter $\beta_0 \lambda$) is coaxial with the inner conductor
- In SSR the outer cylinder (with diameter $\lambda/2$) is coaxial with beam pipes
 - For β_0 < 0.5 the SSR has larger overall physical envelop than the HWR for the same frequency
- Cavity choices:
 - For low β applications ($\beta_0 = 0.1 0.25$)
 - o HWR is chosen for ~160 MHz
 - $\,\circ\,$ SSR is chosen for ~320 MHz
 - For higher β applications ($\beta_0 = 0.25 0.5$)
 - $\circ~$ HWR and SSR are chosen for ~320 MHz

Single spoke - SSR

High *β* **Spoke Cavities**

- High velocity spoke cavities with $\beta_0 > 0.8$ are being designed as an alternative to high β elliptical cavities
- Cavity features
 - Cavities are relatively compact
 - Between 20% 50% smaller (radially) than a TM cavity of the same frequency and β_0
 - For high β_0 cavities diameter is close to TM counterparts
 - Allows low frequency at reasonable size with high longitudinal acceptance
 - Mechanically stable
 - Allows possible 4 K operation
 - Can achieve high shunt impedance
- Possible applications
 - For pulsed spallation neutron sources
 - Compact light sources

325 MHz β =0.82 Single Spoke Cavity

500 MHz β =1.0 Double Spoke Cavity

TM-Type Non-Elliptical Cavities

- Cavity with two beam pipes \rightarrow Twin axis cavity / dual axis cavity
- A superconducting cavity designed to accelerate and decelerate two electron beams in the same cavity
- Used in energy recovery with two separated beams traversing the cavity at the same time

REAL CAVITIES AND ACCELERATOR APPLICATIONS

Facility of Rare Isotope Beams (FRIB)

- A high intensity, heavy ion linac
- Accelerate ion species up to 238 U (A/q=7) with energies of no less than 200 MeV/u

QWR

0.041

80.5

Cavity Type

 β_0

f [MHz]

QWR

0.085

80.5

HWR

0.285

322

HWR

0.53

322

Proton Improvement Plan II (PIP II) at Fermilab

• 800 Me	eV linac	to acceler	rate protor	ns to generate	e intense	Cavity Type	HWR	SSR1	SSR2	LB650	HB650
neutrin	io beam	n for the Lo	ong Baselir	ne Neutrino Fa	acility (LBNF)	Frequency [MHz]	162.5	325	325	650	650
and De	ep-Und	lerground	Neutrino E	xperiment (D	UNE)	Optimal β	0.112	0.22	0.475	0.61	0.97
	•	C		· ·	Elliptical	Effective Length [cm]	20.7	20.3	43.8	70.3	106.1
Cry	oplant			Elliptical LB650 X 9	HB650 X 4 24 Cavities 650 MHz	Aperture [mm]	33	30	40	41.5	59
		Single Spoke SSR1 X 2	Single Spoke SSR2 X 7 35 Cavities	36 Cavities 650 MHz	OSO MINZ	E_{peak}/E_{acc}	4.7	3.84	3.38	2.43	2.1
CDS	HWR	16 Cavities 325 MHz	325 MHz		Oberet in	B _{peak} /E _{acc} [mT/(MV/m)]	5.0	5.81	5.93	4.6	3.94
	162.5 MF	Hz	Careford ()	·	strant B33 MeV	G [Ω]	48	84	115	187	260
H- lon	-	ALL AL AL	/		16 MeV	R _{sh} /Q [[Ω]	272	242	297	327.4	576
RFQ 2.	10 MeV Room Temper	, 32 MeV	LUEVE - IVINOV	Superconducting							HB650 5-co Elliptical Cav
Section	Freq	Energy (MeV)	Cav/mag/CM	Туре				P			les Lille E.
RFQ	162.5	0.03-2.1			12				LI	en la	
HWR (β_{opt} =0.11)	162.5	2.1-10.3	8/8/1	HWR, solenoid	A Starter					o to broto 6	mini (pasp-kkey
SSR1 (β_{opt} =0.22)	325	10.3-35	16/8/2	SSR, solenoid						The A	ABARA
SSR2 (β_{opt} =0.47)	325	35-185	35/21/7	SSR, solenoid						Harre	
LB 650 (β_{g} =0.61)	650	185-500	33/22/11	5-cell elliptical, doub	blet* 40 cm	10 kW CW	L	B650 5-cel			
HB 650 (β_{g} =0.92)	650	500-800	24/8/4	5-cell elliptical, doub	blet* 162.5 MHz HWR	Coupler	_	Elliptical		B650 proto	cavity (B61-EZ-OC
						325 MHz SSR1		Cavity			

Isotope Separator and Accelerator (ISAC II) and TRIUMF

To produce rare isotope beams •

- Consists of 40 QWRs with three different cavity types of $\beta_0=5.7\%$, • 7.1% and 11% with N = 8, 12 and 20
- All cavities have same outer and inner conductor diameter to reduce fabrication cost

TRIUMF ISAC-II Resonators

SCB low β =0.057 SCB medium β =0.071 SCB high β =0.11 106.08 MHz 141.44 MHz 106.08 MHz

106.08 MHz β=0.057

European Spallation Source (ESS)

• 5 MW long pulse proton accelerator

44444
_ Old
O MINION
UNIVERSIT

TRIUMF ISAC-II Resonators

Medium-**B**

704.42

36

0.58 to

0.78

14.3

 8×10^5

4.9

1100

Klystron

Spoke

352.21

0.42 to

0.58

5.74

0.8

335

Tetrode

 2.85×10^{5}

26

High-β

704.42

84

0.78 to

0.95

18.2

 7.6×10^{5}

5.5

1100

IOT

Soreq Applied Research Accelerator Facility (SARAF)

• To accelerate 5 mA beam of protons from 1.3 to 35 MeV or deuterons from 2.6 to 40 MeV

DEFLECTING/CRABBING CAVITIES

Deflecting/Crabbing Concept

• Deflecting/crabbing resonant cavities are required to generate a transverse momentum

Deflecting Cavities

• To separate a single beam to multiple beams

Crabbing Cavities

• To increase luminosity in colliding bunches by allowing head-on-collision of beams

Deflecting/Crabbing Cavities

- Can be produced by either or by both transverse electric (E_t) and magnetic (B_t) fields
- Lorentz force: $\vec{p_t} = \int_{-\infty}^{\infty} \vec{F_t} \, dt = \frac{q}{v} \int_{-\infty}^{+\infty} \left[\vec{E_t} + j(\vec{v} \times \vec{B_t}) \right] \, dz$
- Transverse momentum is related to the gradient of the longitudinal electric field along the beam axis (Panofsky Wenzel theorem)

$$\vec{p}_t = -i\frac{q}{\omega} \int_{-\infty}^{+\infty} \vec{\nabla}_t E_z \,\mathrm{d}z$$
$$p_t = -i\frac{q}{\omega} \lim_{r_0 \to 0} \frac{1}{r_0} \int_{-\infty}^{+\infty} [E_z(r_0, z) - E_z(0, z)] \,\mathrm{d}z$$

- According to the theorem:
 - In a pure TE mode the contribution to the deflection from the magnetic field is completely cancelled by the contribution from the electric field
- Types of designs:
 - TM-type designs \rightarrow Main contribution from B_t
 - TE-like designs \rightarrow Main contribution from E_t
 - TEM-type designs \rightarrow Contribution from both E_t and B_t

TM-Type Deflecting/Crabbing Cavities

- Operates in TM₁₁₀-type mode
 - Lowest deflecting mode
- Squashed elliptical geometry: To separate the two polarizations of same frequency
- Contribution to the net deflection is mainly from transverse magnetic field

- Requires damping of the lowest mode (TM₀₁₀) in the design
- Cavity frequency is inversely proportional to transverse dimensions
- Cavity length $\sim \lambda/2$
- Large with respect to wavelength compared to new designs
 - Disadvantageous for low frequency
 - Advantageous for high frequency
 - Able to accommodate large apertures

1st Deflecting/Crabbing Cavities

- 1st superconducting deflecting cavity
 - Deflecting cavity: 2.865 GHz Karlsruhe/CERN Separator (104 cells)

• 1st superconducting crabbing cavity

1177

OLD

DMINION UNIVERSITY - Crabbing cavity: 508.9 MHz cavity for SuperB Factory at KEK

Designed 1970, operated 1977-1981 At IHEP since 1998

Crab cavities operated from 2007-2010

49

TEM-Type Deflecting/Crabbing Cavities

• Use both electric and magnetic fields to produce the net deflection

- At low operating frequencies gives:
 - Compact designs
 - Low surface fields and high shunt impedance
 - Some designs have no lower order modes
- New <u>compact</u> deflecting/crabbing designs are originated from TE-like or TEM-type designs

4-Rod Crabbing Cavity

- 4-Rod crabbing cavity University of Lancaster / Cockcroft Institute
- Adapted from JLab normal conducting cavity
- Proposed for LHC high luminosity upgrade

499 MHz normal conducting rf separator at JLab

Accelerating lower order mode

+	+
+	+

Fundamental deflecting mode

- Uses both electric and magnetic fields
- Deflecting mode is not the lowest mode

Rod shaping to reduce surface electric and magnetic fields, and the offset nonlinearities

Frequency	400.0	MHz
LOM	375.2	MHz
Nearest HOMs	436.6, 452.1	MHz
E_p^*	4.0	MV/m
B_p^*	7.56	mT
B_p^*/E_p^*	1.89	mT/ (MV/m)
$[R/Q]_T$	915.0	Ω
Geometrical Factor (<i>G</i>)	62.8	Ω
$R_T R_S$	5.7×10 ⁴	Ω^2
At $E_T^* = 1$ MV	//m	

TE-Like Deflecting/Crabbing Cavities

- Operate in TE₁₁₁-like mode
 - Cannot be a pure TE₁₁₁ mode where the contribution from electric and magnetic fields cancel each other
 - Main contribution to the transverse voltage is from transverse electric field

- Has similar rf properties as TEM-type cavities
 - Compact designs
 - Favorable for low frequencies (length ~ $\lambda/2$ and diameter ~1/f)
 - No lower order mode (TE_{111} is the lowest mode)
 - Have demonstrated transverse voltages at high peak surface fields

• So need deformed shapes

TE-Like Cavities for LHC High Luminosity Upgrade

• Crabbing cavities for LHC high luminosity upgrade – Operate at 400 MHz

E Field

B Field

• Crossing angle – 285 µrad

DMINION UNIVERSITY **B** Field

E Field

Electron–Ion Collider (EIC) at BNL

OMINION

International Linear Collider (ILC)

DESIGN CONSIDERATIONS OF NON-ELLIPTICAL ACCELERATING CAVITIES

(1) **DESIGN ASPECTS**

(2) MULTIPACTING

(3) MECHANICAL DESIGN

(4) FABRICATION

(5) CHEMICAL ETCHING

(6) CRYOMODULE DESIGN

Cavity Design Considerations

- Ideally cavities should have:
 - Large accelerating gradient (E_a) / Energy gain (W)
 - Large shunt impedance $(R_{sh}=G^*(R/Q))$ for low losses to reduce power consumption
 - Shapes that reduce peak fields (E_p, B_p) for given E_a
 - Efficient energy transfer to the beam (eta)
 - Reduce multipacting levels

- In addition, related practical issues of these cavities
 - Reduce pressure sensitivity (df/dp)
 - Microphonics
 - Operation: cw or pulsed
 - Cavity tuning
 - Cavity fabrication
 - Chemical processing, cleaning, and assembly

Designing Non-Elliptical Cavities

- Cavity frequency:
 - To minimize unique number of cavity designs
- Cavity β : Number of cavity designs also depend on required velocity range
 - T(β) is efficient over a range of velocities from 0.7 $\beta_0 < \beta < 2\beta_0$ (Especially for QWR)
 - For β >0.5 possible to consider multi-spoke cavities where the reduced transit time factor is compensated by the higher voltage
 - Maintain a certain cavity type until T(β) lowers the voltage below the voltage of the next cavity series
 - For post accelerators with different ion acceleration β profile should be chosen that all ions can be accelerated near the maximum gradient
- Peak surface fields: $E_p \leq 35 \text{ MV/m}$ and $B_p \leq 70 \text{ mT}$
 - Dominates the optimization between practicality and complexity
- Multipacting analysis: Multipacting levels may not be eliminated, but reduced by optimizing the design
 - Advanced simulation tools exist in simulating multipacting resonance levels in cavities that have matched with measurements

Designing Non-Elliptical Cavities

- Baseline mechanical and fabrication model
 - Consider ports: FPC, HOM couplers, Rinsing and surface treatment
 - Choose material thickness: Based on stress analysis
 - Maintain safe limits in terms of stress
 - Check all pressure differential throughout cavity life cycle
 - Minimize Lorentz force detuning due to radiation pressure \rightarrow Stiffeners
 - Tuner designs
- Integrating design for fabrication variables include:
 - Cavity performance
 - Complexity in geometry
 - Operational requirements: 4 K or 2 K
 - Stress analysis
 - Material cost vs machining cost

RF Frequency Considerations

- Smaller structures are cheaper to fabricate so favor small λ (high frequency)
- Lower frequencies increase size of stable region in longitudinal phase space and increase cavity active length so increase the effective voltage
- Lower velocities require lower frequencies
- Typically, $\beta \lambda/2$ between gaps (one accelerating cell)
- Gap is typically half a cell or $g \sim \beta \lambda/4$
- Aperture should be less than the gap to improve acceleration efficiency \rightarrow so a < $\beta\lambda/4$

g=gap, a=aperture

Example:

for a=30mm and β =4%

 λ >3m or f < 100MHz

Design Optimization

- Good simulation tools exist both on the EM and mechanical aspects (CST, HFSS, COMSOL, ANSYS, SLAC ACE3P Code Suite, ...)
- Many geometrical parameters of optimization compared to elliptical cavities
- Optimize cavity parameters to:
 - Minimize peak surface field ratios $-E_p/E_{acc}$ and B_p/E_{acc} (E_p/E_t and B_p/E_t for deflecting and crabbing cavities)
 - Maximize $R_{sh} = G^*(R/Q)$

Multipacting in Non-Elliptical Cavities

- Multipacting always occur in non-elliptical cavities due to complex geometries \rightarrow But not a showstopper
- Now reliable tools exist that can model multipacting resonant levels

Multipacting in Non-Elliptical Cavities

- Multipacting can be reduced careful cavity design
- Example single spoke resonator designed by TRIUMF for RISP
- Balloon variant reduces serious multipacting in operating region

Mechanical Designs of Non-Elliptical Cavities

- Mechanical design focuses on reducing internal stresses under the external pressure load for various operational conditions
- Study mechanical stability to microphonics, pressure fluctuations (df/dp), Lorentz force detuning
- Stiffeners can be added strategically to reduce and improve mechanical stability
- Consider thermal performance when considering thicker material to reduce stresses
- Consider tuning range and tuning force required and cavity stresses for maximum tuning range

Mechanical Designs of Non-Elliptical Cavities

- Response of the cavity to external pressure changes can be dominant contribution at 4 K operation
- Lorentz force detuning: inward pressure in E field and H field regions produce frequency shifts in opposite direction

$$\Delta f = k \int \left(\varepsilon_0 E^2 - \mu_0 H^2 \right) dV$$

• Support ribs in E field and H field to balance deflections so that frequency shift can be cancelled

Mechanical Designs of Non-Elliptical Cavities

250

dB #counts

-80

-100-

-3

-2

P = 100 W

- Driven by mechanical vibration in the environment
- QWRs inner conductor can have low mechanical frequencies (50-100Hz)
- Need to reduce the RMS detuning to <<10% of the design bandwidth to avoid nuisance unlocks
- Mitigations
 - Stiffening during the design/manufacture to raise the mechanical frequency of the lowest modes
 - Centering the inner conductor by plastic deformation so df/dx=0
 - Adding passive dampers in QWR
 - Reducing environmental noise in and around the cryomodule -operation at 2K is guieter than 4K

Cavity Fabrication

- Fabrication of TEM mode cavities must follow the same standards as for elliptical cavities the differences can come from the novel shapes and unique forming steps
 - Consists of many more subcomponents compared to elliptical cavities
 - Requires many more machining/trimming fixtures at different stages of the fabrication process
 - Frequency tuning requires different fixturing compared to elliptical cavities
 - May need additional plastic deformation of welded subcomponents and post fabrication tuning
- New procedures can be qualified in Copper as a `cheap' substitute for Nb or RG Nb
- Fabrication steps can involve
 - Machining of parts from bulk cost optimization between material cost and fabrication cost EDM, milling, lathe
 - Forming –deep drawing from sheet –good for production quantities
 - Spinning from sheet –fast, not as precise as forming typically
 - EB welding in high vacuum for RF surfaces to maintain RRR value of Nb
 - TIG in controlled atmosphere for jacket

SRF 2023 Tutorial –

Cavity Fabrication and Preparation, Rongli Geng

Cavity Fabrication

Cavity Fabrication

325 MHz Single-Spoke Fabricated at Niowave Inc.

500 MHz Double-Spoke Fabricated at Jefferson Lab (HyeKyoung Park)

Fabrication of Non-Elliptical Cavities

Cavity Surface Treatment, Processing and Assembly

• A standard recipe

1	Bare Cavity Inspection – Visual, Dimensional, Vacuum, RF
2	US cleaning and rinse
3	BCP 120-150 µm (flip half-way)
4	High-Pressure Rinse
5	Hydrogen Degassing 600 °C, 10 h
6	RF Tuning
7	BCP 20-30 µm
8	HPR (horiz + vert)
9	Clean Room Assembly
10	Low Tem Bake 120 °C 48 h
	Low rem bane rize of ton
11	Vertical Test @ 2K
11 12	Vertical Test @ 2K Helium Vessel Welding
10 11 12 13	Vertical Test @ 2K Helium Vessel Welding US cleaning
11 12 13 14	Vertical Test @ 2K Helium Vessel Welding US cleaning BCP 20-30 µm
11 12 13 14 15	Vertical Test @ 2K Helium Vessel Welding US cleaning BCP 20-30 µm HPR
11 12 13 14 15 16	Vertical Test @ 2K Helium Vessel Welding US cleaning BCP 20-30 µm HPR Clean Room Assembly
11 12 13 14 15 16 17	Vertical Test @ 2K Helium Vessel Welding US cleaning BCP 20-30 µm HPR Clean Room Assembly Low Temp Bake 120 °C, 48 h
11 12 13 14 15 16 17 18	Vertical Test @ 2K Helium Vessel Welding US cleaning BCP 20-30 µm HPR Clean Room Assembly Low Temp Bake 120 °C, 48 h Horizontal Test @ 2K

High Temp Furnace - JLAB

Low Temp Bake Box

Cryomodule Designs

- Non-elliptical cavities require more complicated cryomodule structures compared to elliptical cavities
- Different solutions investigated for the same cavity types
- Couplers, tuners, and rf lines are often dominant components

SRF 2023 Tutorial – Cryomodule Design, Nicolas Bazin

Cryomodule Designs

400 MHz Double Quarter Wave Cryomodule for SPS, CERN

Final Comments

- Non-elliptical cavities have evolved in the past several decades → Tremendous global interest in superconducting cavities for high energy hadron acceleration, compact high beta cavities, and deflecting/crabbing cavities
- Many accelerators are using non-elliptical cavities such as QWR, HWR, Spoke that have moved the technologies to industrial production aiming high performance and reliability
- Compact crabbing cavity designs have advanced particle colliders in achieving high luminosities
- Parameter, tradeoff, and option space available to the designer is large → No universal design where designs are application specific
- Design process is not reduced to a few simple rules of recipes → Room for pushing the performance of the non-elliptical cavities to higher accelerating/crabbing voltages
- Look out for non-elliptical contributions at SRF 2023

References

• Past SRF Tutorials:

- SRF 2021 Non-Elliptical Cavities R. Laxdal
- SRF 2019 Non-Elliptical Cavities S. De Silva
- SRF 2017 Non-Elliptical Cavities R. Laxdal
- SRF 2015 Non-Elliptical Resonators A. Facco
- SRF 2013 TEM Class Cavity Design M. Kelly
- SRF 2007 Low and Medium β Superconducting Cavities and Accelerators J. Delayen
- Non-Elliptical Accelerating Cavities
 - Design of Low-Velocity Superconducting Accelerating Structures Using Quarter-Wavelength Resonant Lines J. R. Delayen, NIM, A259, 341-357 (1987)
 - Longitudinal Transit Time Factors of Short Independently-Phased Accelerating Structures for Low Velocity Ions J. R. Delayen, NIM, A258, 15-25 (1987)
 - Superconducting Spoke Cavities M. Kelly, 39th ICFA Advanced Beam Dynamics Workshop on High Intensity High Brightness Hadron Beams (2006), <u>http://accelconf.web.cern.ch/AccelConf/abdwhb06/PAPERS/THAY07.PDF</u>
 - Medium-β Superconducting Accelerating Structures J. R. Delayen, SRF 2001, https://accelconf.web.cern.ch/accelconf/srf01/papers/fa007.pdf
 - Applications of Spoke Cavities J. R. Delayen, LINAC 2010, <u>https://accelconf.web.cern.ch/accelconf/LINAC2010/papers/tu302.pdf</u>
 - Superconducting RF Development For FRIB At MSU K. Saito, et. al., LINAC 2014, http://inspirehep.net/record/1363521/files/thioa02.pdf

References

- Non-Elliptical Accelerating Cavities
 - Superconducting Spoke Cavities for High-Velocity Applications C. S. Hopper and J. R. Delayen, Phys. Rev. ST Accel. Beams, 16, 102001, (2013)
 - High-Velocity Spoke Cavities C. S. Hopper, SRF 2015, <u>https://digitalcommons.odu.edu/cgi/viewcontent.cgi?article=1178&context=physics_fac_pubs</u>
 - Multipacting Analysis of High-Velocity Superconducting Spoke Resonators C. S. Hopper and J. R. Delayen, LINAC 2012
 - STUDY OF BALLOON SPOKE CAVITIES, Z.Y. Yao, et. al., SRF 2013, http://accelconf.web.cern.ch/AccelConf/SRF2013/papers/thp033.pdf
- Non-Elliptical Deflecting/Crabbing Cavities
 - Energy Scaling Crab Crossing and the Pair Problem R. B. Palmer, SLAC-PUB-4707 (1988)
 - Design Evolution and Properties of Superconducting Parallel-Bar RF- Dipole Deflecting and Crabbing Cavities S. U. De Silva and J. R. Delayen, Phys. Rev. ST Accel. Beams 16 (2013) 012004
 - Design, Prototyping and Testing of a Compact Superconducting Double Quarter Wave Crab Cavity B. P. Xiao et al., Phys. Rev. ST Accel. Beams 18, 041004 (2015)
 - Designing the Four Rod Crab Cavity for the High-Luminosity LHC Upgrade B. Hall, EuCARD Monograph Vol. 25 (2014)
 - SPX Crab Cavity Development and Testing Result H. Wang, TTC Meeting (2012), <u>https://www.jlab.org/indico/event/24/session/9/contribution/36/material/slides/1.pdf</u>

ADDITIONAL SLIDES

Superconducting Non-Elliptical Cavity Community

Non-Elliptical Facilities and Projects

Project	Lab	Driver	Post- accelerator	Particle	Structure
ATLAS	ANL			н	Split-ring, QWR
ALPI	LNL		\checkmark	P, d / HI	QWR (sputter, bulk)
ISAC-II	TRIUMF		\checkmark	н	QWR
IUAC	IUAC		\checkmark	н	QWR
ReA3/6	NSCL		\checkmark	н	QWR
HIE-Isolde	CERN		\checkmark	н	QWR (sputter)
SARAF	SOREQ	\checkmark		P, d	HWR
SPIRAL-II	GANIL	\checkmark		P, d, HI	QWR
IFMIF	Saclay	\checkmark		P,d	HWR
FRIB	NSCL	\checkmark		н	QWR, HWR
ESS	ESS	\checkmark		P	DSR
RAON	RISP	\checkmark		н	QWR, HWR, SSR
ADS	IMP,IHEP	\checkmark		p	HWR, SSR
PIP-2	FNAL	\checkmark		P	HWR, SSR
Hi-Lumi	CERN		Robelsondal Marson	p	Crab cavities - DQWR, RFD

KEK Crabbing Cavity

80

RF Test Results of Twin Axis Cavity

- Cavity 1:
 - Low field Q_0 of 2.3×10¹⁰
 - Cavity quenched at 6.5 MV/m
 - Weld defect seems to be the limiting factor according to OST measurements
- Cavity 2:
 - Low field Q_0 of 1.3×10^{10}
 - Achieved an accelerating gradient of 23 MV/m (E_p = 56 MV/m & B_p = 126 mT)
 - No multipacting levels were observed during the test
 - Given minimal surface treatment (BCP only, no EP) cavity reached high Q₀

TE-Like Cavities for LHC High Luminosity Upgrade

• Crabbing cavities for LHC high luminosity upgrade – Operate at 400 MHz

RF-Dipole Cavity

TE-Type Non-Elliptical Cavities

Normalized T(β)

- It is usually convenient to define the normalized transit time factor and include the gap effect in the accelerating gradient
- Normalized transit time factor:

$$T^*(\beta) = \frac{T(\beta)}{T(\beta_0)}$$

• Average accelerating gradient:

$$E_a^* = T(\beta_0) E_a$$

where
$$\beta_0 \equiv \beta / T(\beta_0) = \max\{T(\beta)\}$$
 and $T^*(\beta_0) = 1$

• Energy gain definition doesn't change

 $\Delta W_p = q E_a^* L T^*(\beta) \cos \varphi$

Real QWR Cavities

• Typical range \rightarrow frequency: 50 MHz – 160 MHz; β_0 : 0.04 – 0.2

ANL β =0.077, 0.085 72.5 MHz

Spiral-2 β =0.007, 0.12 88.05 MHz

FRIB β =0.041, 0.085 80.5 MHz

RAON β=0.047 81.25 MHz

Real HWR Cavities

• Typical range \rightarrow frequency: 140 MHz – 325 MHz; β_0 : 0.1 – 0.5

ANL β =0.12 325 MHz

FRIB β =0.29, 0.53 322 MHz

IMP β =0.1 162.5 MHz

IFMIF β =0.11 175 MHz

ANL β =0.112 162.5 MHz

Real Single Spoke Cavities

• Typical range \rightarrow frequency: 325 MHz – 700 MHz; β_0 : 0.15 – 0.7

1st SC spoke 1991 ANL β=0.3 850 MHz

TRIUMF/RISP β =0.3 325 MHz

FNAL β =0.215 325 MHz

ODU β =0.82 325 MHz

IHEP β =0.12 325 MHz

IPN-Orsay β =0.15, 0.35 352 MHz

Real Multi Spoke Cavities

ANL β =0.12 325 MHz

1 m ANL β=0.63 345 MHz

ODU β =1.0 500 MHz

IAP β ~0.1 360 MHz 19 gap CH resonator

IMP β =0.067 162.5 MHz CH resonator

Crabbing Cavity for Short Pulse X-ray Project

Multi-Cell TE₁₁-Like Cavities

- Multi-cell cavities provide higher ulletgradient with reduced space on the beam line
- No of HOMs multiplies with no. of cells ullet

Has lower order modes •

2.815 GHz

For JLEIC *e* – 12 GeV *p* – 200 GeV

		Single- Cell RFD	Two-Cell RFD	Three-Cell RFD	Unit
QMIR (<u>Q</u> uasi-waveguide <u>M</u> ult <u>i</u> -cell <u>R</u> esonator)	Frequency	952.6			MHz
	Aperture	70			mm
Beam pipe	SOM	None	846	756.8, 862.2	MHz
	LOM Mode Type	-	Dipole	Dipole	
	1 st HOM	1411.5	1379.5	1335.4	MHz
2.815 GHZ	E_p/E_t	5.4	5.66	5.6	
	B_p/E_t	13.6	11.64	11.4	mT/(MV/m)
Power coupler	$[R/Q]_t$	50	147.5	218.8	Ω
1 over coupler	G	165.7	169	178.9	Ω
	$R_t R_s$	8.3×10 ³	2.5×10 ⁴	3.9×10 ⁴	Ω^2
	Total <i>V_t (e/p</i>) (per beam per side)	4.2 / 21.5			MV
	V _t (per cavity)	0.86	1.9	3.1	MV
	No. of cavities (<i>e</i> / <i>p</i>)	5 / 25	3/12	2/7	
	E _p	30	34	39	MV/m
	B _p	70	70	70	mT

TRIUMF RF-Deflector

- Due to low performance specifications, fabrication Cavity performance parameters: • methods include some alternative techniques:
 - Machining from bulk reactor grade Nb
 - RRR of 45 compared to usual ~300
 - Tungsten Inert Gas (TIG) welding —
 - Developed as an alternative to electron beam welding

- Superconducting Niobium cavity at 4.2 K
- Resonant frequency: 650 MHz
- Deflecting voltage: 0.3 (0.6) MV
- Shunt impedance: 625 Ω
- Geometry factor: 99 Ω
- Peak electric field: 9.5 (19) MV/m
- 12 - Peak magnetic field: (24) mT
- RF power dissipation: 0.35 (1.4) W

