

Progress in European Thin film activities

28 June 2023

I.FAST WP9 Collaboration

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

Energy saving is mandatory for the next generation accelerators...

... cryogenics is one of the larger energy cost in modern SRF accelerators

I.FAST Goal (2025)

Realize a prototype of high performance 1.3 GHz thin film SRF elliptical cavity

 $Q > 1.10^{10} @ 4.5 K$

Multiple challenges:

- ► A15 are Brittle materials
- Complicate Phase Diagram
- Substrate preparation
- Low melting point substrate
- Interface diffusion
- Target Production
- Necessity of Test RF properties on simple geometry
- ▶ ...

I.FAST R&D program cover all the production chain

cristian.pira@Inl.infn.it

Cavity forming

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Seamless Spinning

Forming technology adopted to produce 1.3 GHz and 6 GHz elliptical seamless Cu R&D substrates to all partners

PRIMARY GOAL:

High internal surface quality

OPTIMIZED PRODUCTION PROTOCOL:

- CNC machine
- Reduced Annealing Temperature (400 °C, previous 500 °C)
- New intermediate Deep Drawing Step

) ifas

AM can open to a new way to design RF cavities

GOAL: Prove the possibility to polish properly the surface and get SRF state of the art performances

COPPER

- ▶ Density 99.9%
- High quality surface after Vibrotumbling + EP
- Broken after long polishing (>500 µm removed)
- Production of new optimized prototypes ongoing

Despite the lower surface quality, Cu can be manufactured with low inclination angles

2 prototypes produced using **TRUMPF TruPrint 5000**

AM Cavity cutted after VB + EP of the cell

) IFAST

AM can open to a new way to design RF cavities

GOAL: Prove the possibility to polish properly the surface and get SRF state of the art performances

) IFAST

Additive Manufacturing

AM can open to a new way to design RF cavities

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

ifast

Surface polishing

Metallographic Polishing

MP polished Nb QPR

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

Machining

David Longuevergne

Claire Antoine and

of Oleksandr Hryhorenko,

Courtesy

11

iFAST

Metallographic Polishing

David Longueverg

and

Antoine

Claire,

Oleksandr Hryhorenko,

esy of

As received samples

Oleksandr Hryhorenko Talk today at 12:20: WEIXA06 Recent advances on metallographic polishing for SRF application

Oleksandr Hryhorenko Poster today: WEPWB050 Exploring innovative pathway of cavity fabrication for SRF application

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Surface Polishing

) ifast

12

Plasma Electrolytic Polishing PEP

ifast

Advantages

"Green" water-based salt solutions! No HF acid! Nb - NH_4F & NaF, Cu – SUBU5 or $(NH_4)_2HPO_4$ or $K_2P_2O_7$

5-30 times faster than regular EP Up to 30 μ m/min, significant reduction polishing time From a full day to a couple of hours to treat a cavity!

Lowest roughness 5-50 nm achievable Efficient polishing! Equal thickness removal yield lowest roughness among traditional polishing (EP, BCP, SUBU)

No preparation of surface is required PEP can substitute mechanical polishing steps (CBP, grinding, tumbling)

Plasma Electrolytic Polishing PEP INFN **Results**

1x 🗓 Nb 3x 🛱 Cu Solution Patentees by INFN

Nb planar samples

PEP 30 min Initial Ra= 13 μm Ra= 1.5 μm Additive Manufacturing Nb QPR polishing optimizaztion on-going

Full Cu QPR ready for coating

QPR Samples HZB Heimholtz

Initia

PEP 5+5 min

14

6.5 μm removed

150 μ m removed in ~ 5 h

2023

150 µm removed in ~ 40 min

6 GHz Cu cavity No internal cathode

was used!

70 μm removed in 10 minutes 30 A (100 cm2 → 1.3 GHz ~ 300 A)

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Plasma Electrolytic Polishing PEP (IN Results

INFN

PEP 5+5 min

ifas1

Nb QPR polishing optimizaztion on-going

PR Samples HZB

Eduard Chyhyrynets Poster on Moday: MOPMB009 Plasma Electrolytic Polishing Technology Progress Development for Nb and Cu Substrate Preparation

Ra= 13 μm Ra= 1.5 μm

Nb planar samples

150 μm removed in \sim

150 μm removed in \sim 40 m

6 GHz Cu cavity

No internal cathode was used 70 μ m removed in 10 minutes 30 A (100 cm2 \rightarrow 1.3 GHz ~ 300 A)

cristian.pira@Inl.infn.it

SC Coatings

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

UNIVERSITÄT LOT SIEGEN **NbTiN SC coatings** Lehrstuhl für Oberflächen- und Werkstofftechnologie

From NbN to NbTiN by HiPIMS

Goal: SIS structure by PVD+ALD

	<u>Moreade General</u> <u>Augenologies (Moreageneral Constraints Registering Constraints Registered Register Register Constraints </u>
13th Int. Particle Acc. Conf. ISBN: 978-3-95450-227-1	IPAC2022, Bangkok, Thailand JACoW Publishing ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-TUPOTK016
HiPIMS-COATED NOVEL S(I)S MULTILAYERS FOR SRF CAVITIES A.Ö. Sezgin ¹ , I. Gonzales Diaz-Palacio ³ , X. Jiang ¹ , S. Keckert ⁴ , J. Knobloch ^{4,5} , O. Kugeler ⁴ , R. Ries ² , E. Seiler ² , D. Tikhonov ⁴ , M. Vogel ¹ , R. Zierold ³	

) ifast

Courtesy of A.

cristian.pira@Inl.infn.it

PARAMETER OPTIMIZATION

Defined the **optimal Cathode Power**: Defined the **optimal rocking angle** in Nb-Ti co-sputtering P(Nb) = 300WP(Ti) = 400WNbTiN (111) NbTiN (200) δ' NbN (100)² **Rocking angle** P(Nb) = 500W P(Ti) = 300W-40 0 P(Nb) = 400W P(Ti) = 400WTiN +20° P(Nb) = 300W P(Ti) = 500W-45 +5 Nb₅N₆ P(Nb) = 300W P(Ti) = 400W('n -55 +15 P(Nb) = 400W P(Ti) = 500W(а. -60 +20 **Nb** [0°] Intensity -65 +25 Sample stage 120mm -70 +30 -L-M-R **Ti** [-40°] Intensity (a.u.) 30 35 20 (deg) 40 45 Zubtsovskii 50 -60° **Right NbTiN phase obtained** Courtesy of A. Other parameters (P, Ar/N2 ratio, bias V, ...) 40 20. ° must be explored to reduce spurius phases Optimal rocking angle, but wrong phase...

) ifast

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

Nb₃Sn, V₃Si, NbTiN SC coatings

Science and Technology Facilities Council

Nb₃Sn on Cu and Nb₃Sn on Cu with Nb barrier layer

SIS multilayer structure (Nb/AIN/Nb₃Sn) deposited on Ta

A QPR sample during and after the Nb deposition

Development of 6 GHz and 1.3 GHz cavity coating system

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

ifast

Nb₃Sn, V₃Si, NbTiN SC coatings

Science and Technology **Facilities Council**

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

20

Nb₃Sn coatings

Single target configuration easiest to scale onto elliptical geometry Nb₃Sn cylindrical target are not commercially available

LNL Strategy for Nb₃Sn cylindrical target production

Proof of concept

Nb₃Sn coatings

Nb₃Sn cylindrical target are not commercially available

SC coatings

Sputtering parameter optimization

Nb₃Sn deposited via DCMS from 4" planar stoichiometric target in Ar atmosphere

Single target configuration easiest to scale onto elliptical geometry

In the same run different substrates are coated in the same conditions

) ifas

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Sputtering parameter optimization

SC coatings

Sputtering parameter optimization

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Cu + 1 µ Nb_zSn

Sapphire +1 μ Nb₃Sn

Cu **+ 1 μ Nb** + 1 μ Nb₃Sn

ifast

ł

Sputtering parameter optimization

Sapphire + 1 μm Nb₃Sn Cu + 1 μm Nb₃Sn Cu + 1 μm Nb + 1 μm Nb₃Sn Cu + **30** μm Nb + 1 μm Nb₃Sn

A very thick Nb barrier layer can prevent diffusion at the interface

Sputtering parameter optimization

1.5×10⁵ Counts Connts 403n02, 1039132 20351121 -1035H032 2 20020 5,0×10⁴ 0.0 30 40 50 60 70 80 90 100 2θ (deg) **Only Nb₃Sn phase present**

Ready to coat a QPR for RF test

Room for further improvements:

- Barrier layer thickness, other materials, ...
- Annealing time, Temperature, SC film thickness, ...

Alternative ways to prevent diffusion

cristian.pira@Inl.infn.it

SC coatings

) ifas

Cu + 30 μ Nb + 1 μ Nb₃Sn

Sputtering parameter optimization

Cu + 30 μ Nb + 1 μ Nb₃Sn

) ifas

17 K on Cu + barrier

Alternative ways to prevent diffusion

cristian.pira@Inl.infn.it

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Laser Annealing

Idea:

Anneal the coating without affecting the copper substrate to avoid diffusion at the interface

Scaled to cylindrical geometry

by ns laser radiation

Crystal size \uparrow ~ 20% Adhesion Nb/Cu ↑ ~36% Roughness divided by >~2 Irradiated by laser

30

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

) ifas

ms-Flash Lamp Annealing ms-FLA

ifast

Only the coating layer is heated (even to 1000 °C) while the rest of the cavity remains cold

Improve coating crystallinity but too short to induce the diffusion of Cu

First tests on NbTiN (Nb₃Sn ongoing)

Crystalline grain size increased

HZDR

Atomic Layer Deposition (ALD)

Goal

Deposition of functionalized layers :

- ► Low secondary yield cap layer (↓ multipacting)
- SIS multilayers
- Dielectric surface engineering and doping

New ALD system @CEA Already coated several 1,3 Ghz cavities Compatible w. 700 MHz cavities

) IFAST

Proslier

and T. I

Antoine

Ċ

of Y. Kalboussi,

ourtesy

AIN-NbTiN coated cavity

Atomic Layer Deposition (ALD)

Proslier

and T.

Antoine

Ċ

of Y. Kalboussi,

ourtesy

) ifast

Yasmine Kalboussi Talk today at 10:00: WEIBA01 Surface Engineering by ALD for Superconducting RF Cavities

- Low secondary yield cap layer (+ multipacting)
- SIS multilayers
- Dielectric surface engineering and doping

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

New ALD system @CEA Already coated several 1,3 Ghz cavities Compatible w. 700 MHz cavities

AIN-NbTiN coated cavity

Post Processing

SC Properties Evaluation

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

DC/AC Superconducting Properties Evaluation

ELECTRICAL ENGINEERING SAS

ifas

DC magnetisation measurements

Vibrating Sample Magnetometer Small planar samples (~ 2x2 mm – *cutting*)

small sample

cutting phase (disk saw)

AC magnetisation measurements

Susceptibility – temperature scans

Determining Tc's of different films in Multilayer and SIS samples

AC susceptibility sample holders

cristian.pira@Inl.infn.it

Seiler

ш

Courtesy

Magnetic Field Penetration

Thin Film samples can be compared in conditions similar to ones in the cavity

- DC magnetic field parallel to the surface
- Magnetic field applied from one side of the sample (similar to an SRF cavity)

Applied and penetrated field measured by Hall probe sensors

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

SC properties

evaluation

36

Smith

of L.

Courtesy

) ifas

Science and

Technology

Facilities Council

Magnetic Field Penetration

Science and Technology Facilities Council

> • 5 K • 7 K

• 9 K • 11.5 K • 14.5 K

• 18 K

Thin Film samples can be compared in conditions

Liam G. P. Smith Poster on Monday: MOPMB012

Investigation, Using Nb Foils to Characterise the Optimal Dimensions of Samples Measured by the Magnetic Field Penetration Facility

measured by Hall probe sensors

) ifast

Smith

of L.

250

Courtesy

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

1.01

RF Measurements

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Sample RF test with 7.8 GHz Choke cavity

Science and Technology Facilities Council

) IFAS

Operation with a closed-cycle refrigerator: T_{cavity} = 4.0 K and T_{sample} = 4.0 K Low power (\leq 1.0 W) measurements with an emphasis on fast turn-around time (~2 days sample) **Flat Sample** – a disk diam. 90 - 130 mm

An example of $R_s(T_s)$ measurements for Nb and Nb₃Sn TF planar samples with the choked cavity

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

cristian.pira@Inl.infn.it

Seal

of D.

Courtesy

6 GHz split cavity

- An idea suggested by G. Burt (CI)
- ▶ The cavity cut is along the electric field lines, i.e. electric current is not crossing the cut
- Easy to coat with either conventional planar magnetron or in tubular geometry used for RF cavities
- Easy to inspect
- ▶ Two 6 GHz cavities were Nb coated and tested at 4.2 K < T < 11 K

Nb thin films coated split cavity

for cryogenic measurements

Surface resistance R_s as a function of temperature for Nb thin films coated split cavity

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Conlon

Ч. and

Sian,

Ŀ.

of N. Leicester,

Courtesy

) IFAS

Science and Technology

Facilities Council

6 GHz split cavity

- An idea suggested by G. Burt (CI)
- The cavity cut is along the electric field lines, i.e. electric current is not crossing the cut
 - Nathan Leicester Poster on Monday: MOPMB001
 - Development and Testing of Split 6 GHz cavities with Niobium Coatings

Nb thin films coated split cavity

Split cavity mounted on the cold head for cryogenic measurements

Surface resistance R_s as a function of temperature for Nb thin films coated split cavity

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

Science and Technology Facilities Council

) ifast

Conlon

and J.

Sian,

Leicester

of N.

ourtesy

Cavity A

41

RF losses on nc adapter flange lead to **unwanted heating of the sample** compromising the measured R_res value – resulting in a **systematic error of 12 nOhm**

A SC coating of the adapter flange eliminates the RF heating of the sample

Keckert, S., et al. (2021). "Mitigation of parasitic losses in the quadrupole resonator enabling direct measurements of low residual resistances of SRF samples." <u>*AIP Advances*</u> **11(125326).**

S. Keckert

of O. Kugert and

Courtesy

State-of-the-art chemically polished Nb sample

 1.5
 2
 2.5
 3
 3.5
 4
 4.5

 Temperature (K)

 Same sample after optimized metallographic polishing

 R_{res} < 1nOhm directly measured with QPR</td>
 Simple

- Metallographic polishing produce high quality baseline samples for thin-film investigations
- QPR is now able to measure R_res with same accuracy and precision as an SRF cavity

RF measurements

Kugert

of O.

Courtesy

QuadruPole Resonator

State-of-the-art chemically polished Nb sample

Same sample after optimized metallographic polishing R_{res} < 1nOhm directly measured with QPR

Metallographic polishing produce high quality baseline samples for thin-film investigations

QPR is now able to measure R_res with same accuracy and precision as an SRF cavity

RF measurements

Kugert

of O.

ourtesy

) ifas

1.3 GHz cavity testing

 Facilities ready at CEA, HZB, INFN LASA INFN LNL for 6 GHz cavities

► Assembling in process at STFC

ourtesy of O. Malyshev

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES

New 1.3 GHz insert @ STFC

cristian.pira@Inl.infn.it

Conclusion

- Great advancements on planar samples
- First RF results on QPR expected by the end of the year
- ► The **project is on the track** to produce the first 1.3 GHz prototype in 2025

Our Vision of the future for SRF

cristian.**pira**@Inl.infn.it

Thank You for Your Attention!

PROGRESS IN EUROPEAN THIN FILM ACTIVITIES