Paper | Title | Page |
---|---|---|
MOPMB093 | Optimizing Growth of Niobium-3 Tin Through Pre-nucleation Chemical Treatments | 337 |
SUSPB026 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: This work was supported by the U.S. National Science Foundation under award PHY-1549132, the Center for Bright Beams. Nb₃Sn is a promising alternative material for SRF cavities that is close to reaching practical applications. To date, one of the most effective growth methods for this material is vapor diffusion, yet further improvement is needed for Nb₃Sn to reach its full potential. The major issues faced by vapor diffusion are tin depleted regions and surface roughness, both of which lead to impaired performance. Literature has shown that the niobium surface oxide plays an important role in the binding of tin to niobium. In this study, we performed various chemical treatments on niobium samples pre-nucleation to enhance tin nucleation. We quantify the effect that these various treatments had through scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). These methods reveal information on tin nucleation density and uniformity, and a thin tin film present on most samples, even in the absence of nucleation sites. We present our findings from these surface characterization methods and introduce a framework for quantitatively comparing the samples. We plan to apply the most effective treatment to a cavity and conduct an RF test soon. |
||
Poster MOPMB093 [1.118 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB093 | |
About • | Received ※ 21 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 26 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEIAA04 | Development of High-performance Niobium-3 Tin Cavities at Cornell University | 600 |
|
||
Funding: Work supported by the National Science Foundation under Grant No. PHY-1549132, the Center for Bright Beam and U.S. DOE grant No. DE-SC0008431. Niobium-3 tin is a promising material for next-generation superconducting RF cavities due to its high critical temperature and high theoretical field limit. There is currently significant worldwide effort aiming to improve Nb₃Sn growth to push this material to its ultimate performance limits. This talk will present an overview of Nb₃Sn cavity development at Cornell University. One approach we are pursuing is to further advance the vapor diffusion process through optimized nucleation and film thickness. Additionally, we are exploring alternative Nb₃Sn growth methods, such as the development of a plasma-enhanced chemical vapor deposition (CVD) system, as well as Nb₃Sn growth via electrochemical synthesis. |
||
Slides WEIAA04 [5.260 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEIAA04 | |
About • | Received ※ 29 June 2023 — Revised ※ 11 August 2023 — Accepted ※ 21 August 2023 — Issue date ※ 22 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |