Author: Dima, R.
Paper Title Page
WECAA01 Progress in European Thin Film Activities 607
 
  • C. Pira, O. Azzolini, R. Caforio, E. Chyhyrynets, D. Fonnesu, D. Ford, V.A. Garcia, G. Keppel, G. Marconato, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • C.Z. Antoine, Y. Kalboussi, Th. Proslier
    CEA-IRFU, Gif-sur-Yvette, France
  • C. Benjamin, O.B. Malyshev, N. Marks, B.S. Sian, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • C. Benjamin, J.W. Bradley, G. Burt, O.B. Malyshev, N. Marks, D.J. Seal, B.S. Sian, S. Simon, D.A. Turner, R. Valizadeh
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • S. Berry
    CEA-DRF-IRFU, France
  • R. Berton, D. Piccoli, F. Piccoli, G. Squizzato, F. Telatin
    Piccoli, Noale (VE), Italy
  • M. Bertucci, R. Paparella
    INFN/LASA, Segrate (MI), Italy
  • M. Bonesso, S. Candela, V. Candela, R. Dima, G. Favero, A. Pepato, P. Rebesan, M. Romanato
    INFN- Sez. di Padova, Padova, Italy
  • J.W. Bradley, S. Simon
    The University of Liverpool, Liverpool, United Kingdom
  • G. Burt, D.J. Seal, D.A. Turner
    Lancaster University, Lancaster, United Kingdom
  • O. Hryhorenko, D. Longuevergne
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • X. Jiang, T. Staedler, A.O. Zubtsovskii
    University Siegen, Siegen, Germany
  • S. Keckert, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • N.L. Leicester
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • A. Medvids, A. Mychko, P. Onufrijevs
    Riga Technical University, Riga, Latvia
  • S. Prucnal, S. Zhou
    HZDR, Dresden, Germany
  • R. Ries
    Slovak Academy of Sciences, Institute of Electrical Engineering, Bratislava, Slovak Republic
  • E. Seiler
    IEE, Bratislava, Slovak Republic
  • L.G.P. Smith
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • A-M. Valente-Feliciano
    JLab, Newport News, Virginia, USA
 
  Funding: This project has received funding from the European Union s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730.
Thin-film cav­i­ties with higher Tc su­per­con­duc­tors (SC) than Nb promise to move the op­er­at­ing tem­per­a­ture from 2 to 4.5 K with sav­ings 3 or­ders of mag­ni­tude in cryo­genic power con­sump­tion. Sev­eral Eu­ro­pean labs are co­or­di­nat­ing their ef­forts to ob­tain a first 1.3 GHz cav­ity pro­to­type through the I.​FAST col­lab­o­ra­tion and other in­for­mal col­lab­o­ra­tions with CERN and DESY. R&D cov­ers the en­tire pro­duc­tion chain. In par­tic­u­lar, new pro­duc­tion tech­niques of seam­less Cop­per and Nio­bium el­lip­ti­cal cav­i­ties via ad­di­tive man­u­fac­tur­ing are stud­ied and eval­u­ated. New acid-free pol­ish­ing tech­niques to re­duce sur­face rough­ness in a more sus­tain­able way such as plasma elec­trop­o­l­ish­ing and met­al­lo­graphic pol­ish­ing have been tested. Op­ti­miza­tion of coat­ing pa­ra­me­ters of higher Tc SC than Nb (Nb₃Sn, V₃Si, NbTiN) via PVD and mul­ti­layer via ALD are on the way. Fi­nally, rapid heat treat­ments such as Flash Lamp An­neal­ing and Laser An­neal­ing are used to avoid or re­duce Cu dif­fu­sion in the SC film. The de­vel­op­ment and char­ac­ter­i­za­tion of SC coat­ings is done on pla­nar sam­ples, 6 GHz cav­i­ties, choke cav­i­ties, QPR and 1.3 GHz cav­i­ties. This work pre­sents the progress sta­tus of these co­or­di­nated ef­forts.
 
slides icon Slides WECAA01 [15.846 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WECAA01  
About • Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 02 September 2023 — Issue date ※ 02 September 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB119 Additive Manufacturing of Pure Niobium and Copper Using Laser Powder Bed Fusion for Particle Accelerator Applications 872
SUSPB034   use link to see paper's listing under its alternate paper code  
 
  • D. Ford, R. Caforio, E. Chyhyrynets, G. Keppel, C. Pira
    INFN/LNL, Legnaro (PD), Italy
  • M. Bonesso, S. Candela, V. Candela, R. Dima, G. Favero, A. Pepato, P. Rebesan, M. Romanato
    INFN- Sez. di Padova, Padova, Italy
  • M. Pozzi
    Rösler Italiana s.r.l., Concorezzo, Italy
 
  Funding: This project has received funding from the European Union¿s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730. Work supported by the INFN CSNV experiment SAMARA.
In this study, Metal Ad­di­tive Man­u­fac­tur­ing (MAM) was eval­u­ated as a vi­able method for pro­duc­ing seam­less 6 GHz pure cop­per and nio­bium pro­to­types with­out the use of in­ter­nal sup­ports. Pre­lim­i­nary tests were per­formed to eval­u­ate print­abil­ity, lead­ing to fur­ther in­ves­ti­ga­tions into sur­face treat­ments to re­duce sur­face rough­ness from 35 µm to less than 1 µm. Ad­di­tional pro­to­types were printed using dif­fer­ent pow­ders and ma­chines, ex­plor­ing var­i­ous print­ing pa­ra­me­ters and in­no­v­a­tive con­tact­less sup­port­ing struc­tures to im­prove the qual­ity of down­ward-fac­ing sur­faces with small in­cli­na­tion an­gles. These struc­tures en­abled the fab­ri­ca­tion of seam­less SRF cav­i­ties with a rel­a­tive den­sity greater than 99.8%. Qual­ity test­ing was con­ducted using tech­niques such as to­mog­ra­phy, leak test­ing, res­o­nant fre­quency as­sess­ment, and in­ter­nal in­spec­tion. The re­sults of this study are pre­sented herein.
 
poster icon Poster WEPWB119 [9.235 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB119  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)