Paper | Title | Page |
---|---|---|
MOPMB006 | SIMS Characterization of Nitrogen Doping of LCLS-II-HE Production Cavities | 67 |
|
||
Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177 and Office of High Energy Physics grant DE-SC-0014475. The thermal diffusion of nitrogen into the surface of niobium has been shown to yield superior low-loss SRF performance. An effective solution was identified and promptly employed in the production of cryomodules for LCLS-II. With added experience and R&D, a modified process was chosen for use in the upgrade for LCLS-II-HE. Largely motivated by this circumstance, supporting research has significantly refined the technique for making calibrated secondary ion mass spectrometry (SIMS) measurements of the N concentration depth profiles produced by production processes. Standardized reference samples were included with four HE production cavities in their N-doping furnace runs. We report the calibrated dynamic SIMS depth profiles of N, C, and O for these samples, together with the cryogenic acceptance test performance of the associated cavities. Interpretation and comparison with similar samples acquired in other furnaces highlights the importance of intentional process quality control of furnace conditions. |
||
Poster MOPMB006 [1.380 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB006 | |
About • | Received ※ 16 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 18 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB043 | Characterization of Dissipative Regions of an N-Doped SRF Cavity | 202 |
|
||
Funding: DE-AC05-06OR23177 NSF Award No. 1734075 W911NF-16-2-0189 We report scanning tunneling microscopy measurements on N-doped cavity hot and cold spot cutouts. Analysis of the electron tunneling spectra using a proximity effect theory shows that hot spots have a reduced superconducting gap and a wider distribution of the contact resistance. Alone, these degraded superconducting properties account for a much weaker excess dissipation as compared with the vortex contribution. Based on the correlation between the quasiparticle density of states and temperature mapping, we suggest that degraded superconducting properties may facilitate vortex nucleation or settling of trapped flux during cooling the cavity through the critical temperature. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB043 | |
About • | Received ※ 19 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 13 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPMB044 | Topographic Evolution of Nitrogen Doped Nb Subjected to Electropolishing | 207 |
|
||
Funding: DE-AC05-06OR23177 DE-SC-0014475 Surface quality is paramount in facilitating high perfor-mance SRF cavity operation. Here, we investigate the topographic evolution of samples subjected to N-doping and 600 °C vacuum anneal. We show that in N-doped Nb, niobium nitrides may grow continuously along grain boundaries. Upon electropolishing high slope angle grooves are revealed which sets up a condition that may facilitate a supression of the superheating field. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB044 | |
About • | Received ※ 19 June 2023 — Revised ※ 23 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 17 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEIAA03 | Surface Roughness Reduction and Performance of Vapor-Diffusion Coating of Nb3Sn Film for SRF Application | 593 |
|
||
Funding: This work is authored by Jefferson Science Associates LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. Nb₃Sn offers the prospect of better RF performance (Q and Eacc) than niobium at any given temperature because of its superior superconducting properties. Nb₃Sn-coated SRF cavities are routinely produced by growing a few microns thick Nb₃Sn film on Nb cavities via tin vapor diffusion. It has been observed that a clean and smooth surface can enhance the performance of the Nb₃Sn-coated cavity, typically, the attainable acceleration gradient. The reduction of surface roughness is often linked with a correlative reduction in average coating thickness and grain size. Besides Sn supply’s careful tuning, the temperature profiles were varied to reduce the surface roughness as low as ~40 nm in 20 µm × 20 µm AFM scans, one-third that of the typical coating. Samples were systematically coated inside a mock single-cell cavity and examined using different material characterization techniques. A few sets of coating parameters were used to coat 1.3 GHz single-cell cavities to understand the effects of roughness variation on the RF performance. This presentation will discuss ways to reduce surface roughness with results from a systematic analysis of the samples and Nb₃Sn-coated single-cell cavities. |
||
Slides WEIAA03 [7.231 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEIAA03 | |
About • | Received ※ 19 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 21 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |