Author: Plattner, P.S.
Paper Title Page
WEPWB057 Refurbishment of an Elbe-Type Cryomodule for Coated HOM-Antenna Tests for MESA 709
SUSPB042   use link to see paper's listing under its alternate paper code  
 
  • P.S. Plattner, F. Hug, T. Stengler
    KPH, Mainz, Germany
 
  Funding: The work received funding by BMBF through 05H21UMRB1.
The Mainz Energy-Recovering Superconducting Accelerator (MESA), an energy-recovering (ER) LINAC, is currently under construction at the university Mainz. In the ER mode a continues wave (CW) beam is accelerated from 5 MeV up to 105 MeV with a beam current of up to 1 mA. This current is accelerated and decelerated twice within a cavity. For future experiments, the beam current limit has to be pushed up to 10 mA. An analysis of the MESA cavities has shown that the HOM antennas quench at such high beam currents due to the extensive power deposition and the resulting heating of the HOM coupler. To avoid quenching it is necessary to use superconducting materials with higher critical temperature. For this purpose, the HOM antennas will be coated with NbTiN and Nb3SN and their properties will be investigated. For use in the accelerator, the HOM antennas will be installed in the cavities of a former ALICE cryomodule, kindly provided by STFC Daresburry. This paper will show both the status of the refurbishment of the ALICE module to suit MESA, and the coating of the HOM antennas.
The authors would like to express their sincere gratitude to STFC Daresbury for the donation of the ALICE module, which strongly supports SRF research in Mainz.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB057  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 09 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB082 Operational Experience with Turn-Key SRF Systems for Small Accelerators Like MESA 768
 
  • T. Stengler, K. Aulenbacher, F. Hug, P.S. Plattner
    KPH, Mainz, Germany
 
  Funding: The work is funded by the German Research Foundation (DFG) under the Cluster of Excellence "PRISMA+" EXC 2118/2019 and the Federal Ministry of Education and Research (BMBF) through project 05H21UMRB1
New SRF-based accelerator development at sites without long-term experience in SRF development is a major challenge. Especially in-house development of cryomodules is an almost impossible obstacle to overcome for small projects. To minimize such obstacles, turn-key SRF systems provided by industry can be of great importance. For the multiturn ERL MESA, which is currently under construction at Johannes Gutenberg-Universität Mainz, two turnkey cryomodules have been purchased from industry and successfully tested. The specifications of a design gradient of 12.5 MV/m in CW operation with an unloaded Q of 1.25*1010 at 1.8 K had to be met. Since the design of the modules had to be modified for high current CW operation, a close cooperation with the manufacturer was of great importance. By purchasing such a turn-key SRF system, the MESA project successfully established the SRF accelerator technology at the site within six years. This was achieved through close monitoring of the manufacturing process and close cooperation with the manufacturer. An overview of the experience with the successful technology transfer of a complete turn-key SRF system for small accelerators will be given.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB082  
About • Received ※ 25 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 03 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)