Paper | Title | Page |
---|---|---|
MOIAA05 | Commissioning of the Second JLAB C75 Cryomodule & Performance Evaluation of Installed C75 Cavities | 14 |
|
||
Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177. JLAB has long been a hub of SRF technology with the CEBAF accelerator as one of its first large scale adopters. As SRF technology has advanced, the C50 and C100 programs have allowed for the extension of CEBAF’s total energy to 6 GeV and nearly 12 GeV respectively. Along with the increase in energy reach, rates of accelerating gradient degradation have been extracted for these cryomodule designs. A plan to mitigate these losses & maintain robust gradient headroom to deliver the 12 GeV program ¿ the CEBAF Performance Plan¿ established a multi-year effort of cryomodule refurbishments and replacements. Part of this plan included a cost optimization of the C50 program with more modern processing techniques and the replacement of existing cavities with larger grain boundary cavities produced from ingot Niobium (dubbed C75 for 75 MeV gain). Reports have been made on the prototype pair of C75 cavities installed in a C50 cryomodule and the first full C75 cryomodule installed in 2017 and 2021. This paper reports on the results from the qualification of the cavities for the second C75 module in both a vertical cryostat and the commissioning results of the cryomodule in the CEBAF tunnel. |
||
Slides MOIAA05 [1.810 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOIAA05 | |
About • | Received ※ 19 June 2023 — Revised ※ 27 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 02 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB053 | Simulation of the Dynamics of Gas Mixtures during Plasma Processing in the C75 Cavity | 696 |
|
||
Funding: The work is supported by SC Nuclear Physics Program through DOE SC Lab funding announcement DE-FOA-0002670 & is authored by JSA, LLC under U.S. DOE Contract No. DE-AC05- 06OR23177 Plasma processing using a mixture of noble gas and oxygen is a technique that is currently being used to reduce field emission and multipacting in accelerating cavities. Plasma is created inside the cavity when the gas mixture is exposed to an electromagnetic field that is generated by applying RF power through the fundamental power or higher-order mode couplers. Oxygen ions and atomic oxygen are created in the plasma which breaks down the hydrocarbons on the surface of the cavity and the residuals from this process are removed as part of the process gas flow. Removal of hydrocarbons from the surface increases the work function and reduces the secondary emission coefficient. This work describes the initial results of plasma simulation, which provides insight into the ignition process, distribution of different species, and interactions of free oxygen and oxygen ions with the cavity surfaces. The simulations have been done with an Ar/¿2 plasma using COMSOL® multiphysics. These simulations help in understanding the dynamics and control of plasma inside the cavity and the exploration of different gas mixtures. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB053 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 29 June 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB054 | In Situ Plasma Processing of Superconducting Cavities at JLab, 2023 Update | 701 |
|
||
Jefferson Lab has an ongoing R&D program in plasma processing which just completed a round of production processing in the CEBAF accelerator. Plasma processing is a common technique for removing hydrocarbons from surfaces, which increases the work function and reduces the secondary emission coefficient. Unlike helium processing which relies on ion bombardment of the field emitters, plasma processing uses free oxygen produced in the plasma to break down the hydrocarbons on the surface of the cavity. The initial focus of the effort was processing C100 cavities by injecting RF power into the HOM coupler ports. Results from processing cryomodules in the CEBAF accelerator as well as vertical test results will be presented. The goal will be to improve the operational gradients and the energy margin of the linacs. This work will describe the systems and methods used at JLAB for processing cavities using an argon-oxygen gas mixture as well as a helium-oxygen gas mixture. Before and after plasma processing results will also be presented.
Funding provided by SC Nuclear Physics Program through DOE SC Lab funding announcement DE-FOA-0002670. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB054 | |
About • | Received ※ 18 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 01 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXA04 |
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators | |
|
||
Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960. Recent progress in the development of high-quality Nb₃Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. We have developed a prototype single-cell cavity to prove the feasibility of operation up to the accelerating gradient required for 1 MeV energy gain, cooled by conduction with cryocoolers. The cavity has a ~3 ¿m thick Nb₃Sn film on the inner surface, deposited on a ~4 mm thick bulk Nb substrate and a bulk ~7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three cryocoolers. The rf tests of the conduction-cooled cavity achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date |
||
Slides THIXA04 [3.906 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |