Paper | Title | Page |
---|---|---|
TUPTB010 | Preservation of the High Quality Factor and Accelerating Gradient of Nb₃Sn-Coated Cavity During Pair Assembly | 405 |
|
||
Funding: This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics. Two CEBAF 5-cell accelerator cavities have been coated with Nb₃Sn film using the vapor diffusion technique. One cavity was coated in the Jefferson Lab Nb₃Sn cavity coating system, and the other in the Fermilab Nb₃Sn coating system. Both cavities were measured at 4 K and 2 K in the vertical dewar test in each lab and then assembled into a cavity pair at Jefferson Lab. Previous attempts to assemble Nb₃Sn cavities into a cavity pair degraded the superconducting properties of Nb₃Sn-coated cavities. This contribution discusses the efforts to identify and mitigate the pair assembly challenges and will present the results of the vertical tests before and after pair assembly. Notably, one of the cavities reached the highest gradient above 80 mT in the vertical test after the pair assembly. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB010 | |
About • | Received ※ 23 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 02 July 2023 — Issue date ※ 09 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTB019 | First Results from Nb₃Sn Coatings of 2.6 GHz Nb SRF Cavities Using DC Cylindrical Magnetron Sputtering System | 429 |
SUSPB047 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Supported by DOE, Office of Accelerator R&D and Production, Contact No. DE-SC0022284, with partial support by DOE, Office of Nuclear Physics DE-AC05-06OR23177, Early Career Award to G. Eremeev. A DC cylindrical magnetron sputtering system has been commissioned and operated to deposit Nb₃Sn onto 2.6 GHz Nb SRF cavities. After optimizing the deposition conditions in a mock-up cavity, Nb-Sn films are deposited first on flat samples by multilayer sequential sputtering of Nb and Sn, and later annealed at 950 °C for 3 hours. X-ray diffraction of the films showed multiple peaks for the Nb₃Sn phase and Nb (substrate). No peaks from any Nb-Sn compound other than Nb₃Sn were detected. Later three 2.6 GHz Nb SRF cavities are coated with ~1 µm thick Nb₃Sn. The first Nb₃Sn coated cavity reached close to Eacc = 8 MV/m, demonstrating a quality factor Q₀ of 3.2 × 108 at Tbath = 4.4 K and Eacc = 5 MV/m, about a factor of three higher than that of Nb at this temperature. Q₀ was close to 1.1 × 109, dominated by the residual resistance, at 2 K and Eacc = 5 MV/m. The Nb₃Sn coated cavities demonstrated Tc in the range of 17.9 ¿ 18 K. Here we present the commissioning experience, system optimization, and the first results from the Nb₃Sn fabrication on flat samples and SRF cavities. |
||
Poster TUPTB019 [1.216 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB019 | |
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 10 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTB020 | Surface Properties and RF Performance of Vapor Diffused Nb₃Sn on Nb after Sequential Anneals below 1000 °C | 433 |
|
||
Nb₃Sn is a next-generation superconducting material that can be used for future superconducting radiofrequency (SRF) accelerator cavities, promising better performance, cost reduction, and higher operating temperature than Nb. The Sn vapor diffusion method is currently the most preferred and successful technique to coat niobium cavities with Nb₃Sn. Among post-coating treatments to optimize the coating quality, higher temperature annealing without Sn is known to degrade Nb₃Sn because of Sn loss. We have investigated Nb₃Sn/Nb samples briefly annealed at 800-1000 °C, for 10 and 20 minutes to potentially improve the surface to enhance the performance of Nb₃Sn-coated cavities. Following the sample studies, a coated single-cell cavity was sequentially annealed at 900 °C and tested its performance each time, improving the cavity’s quality factor relatively. This paper summarizes the sample studies and discusses the RF test results from sequentially annealed SRF Nb₃Sn/Nb cavity. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB020 | |
About • | Received ※ 19 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 01 July 2023 — Issue date ※ 07 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPTB033 | On the Way to a 10 MeV, Conduction-Cooled, Compact SRF Accelerator | 471 |
|
||
Funding: The presentation has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. After the success of designing a compact 1 MeV, 1 MW accelerator based on conduction-cooled SRF, Jefferson Lab is now pursuing a concept to provide a tenfold increase of the beam energy. The higher energy significantly extends the range of applications for environmental remediation and industry in general. The obvious challenge for SRF is to move from a single-cell to a multicell cavity while maintaining high efficiency and the ability to operate the machine without a complex cryogenic plant. The contribution presents the latest results of this design study with respect to its centerpiece, a Nb₃Sn coated 915 MHz five-cell cavity and its corresponding RF components, i.e. FPC and HOM absorber, as well as the conduction-cooling concept based on commercially available cryocoolers. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-TUPTB033 | |
About • | Received ※ 19 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 18 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEIAA03 | Surface Roughness Reduction and Performance of Vapor-Diffusion Coating of Nb3Sn Film for SRF Application | 593 |
|
||
Funding: This work is authored by Jefferson Science Associates LLC under U.S. DOE Contract No. DE-AC05- 06OR23177. Nb₃Sn offers the prospect of better RF performance (Q and Eacc) than niobium at any given temperature because of its superior superconducting properties. Nb₃Sn-coated SRF cavities are routinely produced by growing a few microns thick Nb₃Sn film on Nb cavities via tin vapor diffusion. It has been observed that a clean and smooth surface can enhance the performance of the Nb₃Sn-coated cavity, typically, the attainable acceleration gradient. The reduction of surface roughness is often linked with a correlative reduction in average coating thickness and grain size. Besides Sn supply’s careful tuning, the temperature profiles were varied to reduce the surface roughness as low as ~40 nm in 20 µm × 20 µm AFM scans, one-third that of the typical coating. Samples were systematically coated inside a mock single-cell cavity and examined using different material characterization techniques. A few sets of coating parameters were used to coat 1.3 GHz single-cell cavities to understand the effects of roughness variation on the RF performance. This presentation will discuss ways to reduce surface roughness with results from a systematic analysis of the samples and Nb₃Sn-coated single-cell cavities. |
||
Slides WEIAA03 [7.231 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEIAA03 | |
About • | Received ※ 19 June 2023 — Revised ※ 29 June 2023 — Accepted ※ 19 August 2023 — Issue date ※ 21 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB126 | First Results from Nanoindentation of Vapor Diffused Nb₃Sn Films on Nb | 888 |
|
||
Funding: U.S. Department of Energy, Office of Science, Office of Nuclear Physics & Office of High Energy Physics. The mechanical vulnerability of the Nb₃Sn-coated cavities is identified as one of the significant technical hurdles toward deploying them in practical accelerator applications in the not-so-distant future. It is crucial to characterize the material’s mechanical properties in ways to address such vulnerability. Nanoindentation is a widely used technique for measuring the mechanical properties of thin films that involves indenting the film with a small diamond tip and measuring the force-displacement response to calculate the film’s elastic modulus, hardness, and other mechanical properties. The nanoindentation analysis was performed on multiple vapor-diffused Nb₃Sn samples coated at Jefferson Lab and Fermilab coating facilities for the first time. This contribution will discuss the first results obtained from the nanoindentation of Nb₃Sn-coated Nb samples prepared via the Sn vapor diffusion technique. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB126 | |
About • | Received ※ 19 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 16 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THIXA04 |
Development of a Prototype Superconducting Radio-Frequency Cavity for Conduction-Cooled Accelerators | |
|
||
Funding: Work supported by the U.S. DOE, ARDAP Office, under contract No. DE-AC05-06OR23177. SB¿s microscopy work at the NHMFL was partly supported by the U.S. DOE, HEP Office under Award No. DE-SC0009960. Recent progress in the development of high-quality Nb₃Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. We have developed a prototype single-cell cavity to prove the feasibility of operation up to the accelerating gradient required for 1 MeV energy gain, cooled by conduction with cryocoolers. The cavity has a ~3 ¿m thick Nb₃Sn film on the inner surface, deposited on a ~4 mm thick bulk Nb substrate and a bulk ~7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three cryocoolers. The rf tests of the conduction-cooled cavity achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date |
||
Slides THIXA04 [3.906 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |