Author: Thackston, K.A.
Paper Title Page
WEPWB131 Demonstration of Magnetron as an Alternative RF Source for SRF Accelerators 902
 
  • H. Wang, K. Jordan, R.A. Rimmer
    JLab, Newport News, Virginia, USA
  • J.P. Anderson, C.P. Moeller, K.A. Thackston
    GA, San Diego, California, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and DOE OS/ARDAP Accelerator Stewardship award 2019-2023.
Magnetron has been considered as alternate high-efficiency, low-cost RF sources for linacs and storage rings [1] for national labs and industrial applications. After the demonstration of magnetrons power to drive and combine for a radio frequency cavity at 2450 MHz in CW mode, we have used trim coils adding to a water-cooled magnetron and amplitude modulation feedback to further suppress the side-band noise to -46.7 dBc level. We also demonstrated the phase-locking to an industrial grade cooking magnetron transmitter at 915 MHz with a 75 kW CW power delivered to a water load by using a -26.6 dBc injection signal [2]. The sideband noise from the 3-Phase SCRs DC power supply can be reduced to -16.2 dBc level. Further noise reduction and their power combining scheme using magic-tee and cavity type combiners for higher power application (2x75kW) are to be presented. We intent to use one power station to drive the normal conducting and superconducting RF cavities for the inductrial linac. We also going to demonstarte a vertical SRF cavity test with a high input coupling Q using a 2.45GHz magnetron and comparing with a baseline test result using a solid state amplifier.
[1]. doi:10.18429/JACoW-IPAC2015-WEPWI028.
[2]. doi:10.18429/JACoW-NAPAC2022-WEZD3.
 
poster icon Poster WEPWB131 [2.445 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB131  
About • Received ※ 16 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 19 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)