Paper | Title | Page |
---|---|---|
WEPWB049 | Multipacting in C75 Cavities | 674 |
|
||
Funding: This work was supported by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. Cavities for the C75 cryomodule refurbishment program are currently being built, processed, tested and installed in the CEBAF accelerator at Jefferson Lab. They consist of 5-cell, 1497 MHz cavities with waveguide-type power coupler and for higher-order modes. Most of the cavities rf tests in a vertical cryostat at 2.07 K were limited by strong multipacting at accelerating gradients in the range 18 - 23 MV/m. A softer multipacting barrier was sometimes found at 13 - 15 MV/m. An unusual feature of the multipacting was that the barrier often shifted to a lower gradient ~17 MV/m, after multiple quenches at ~20 MV/m. This phenomenon was reproduced in a single-cell cavity of the same shape. The cavity was tested after different amounts of mechanical tuning and residual magnetic field, with no significant impact to the multipacting behavior. This contribution summarizes the experimental results from cavity rf tests, some of which were complemented by additional diagnostic instrumentation. Results from 2D and 3D simulations are also presented, indicating favorable conditions for multipacting at the equator in the range 20 - 29 MV/m. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB049 | |
About • | Received ※ 15 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 01 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB103 | Simulations and First RF Measurements of Coaxial HOM Coupler Prototypes for PERLE SRF Cavities | 831 |
|
||
Superconducting Radio-Frequency (SRF) linac cryomodules are foreseen for the high-current multi-turn energy recovery linac PERLE (Powerful Energy Recovery Linac for Experiments). Coaxial higher order mode (HOM) couplers are the primary design choice to absorb beam-induced power and avoid beam instabilities. We have used 3D-printed and copper-coated HOM couplers for the prototyping and bench RF measurements on the copper PERLE cavities. We have started a collaboration with JLab and CERN on this effort. This paper presents electromagnetic simulations of the cavity HOM-damping performance on those couplers. Bench RF measurements of the HOMs on an 801.58 MHz 2-cell copper cavity performed at JLab are detailed. The results are compared to eigenmode simulations in CST to confirm the design. RF-thermal simulations are conducted to investigate if the studied HOM couplers undergo quenching. | ||
Poster WEPWB103 [1.533 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB103 | |
About • | Received ※ 18 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 02 July 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPWB131 | Demonstration of Magnetron as an Alternative RF Source for SRF Accelerators | 902 |
|
||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177, and DOE OS/ARDAP Accelerator Stewardship award 2019-2023. Magnetron has been considered as alternate high-efficiency, low-cost RF sources for linacs and storage rings [1] for national labs and industrial applications. After the demonstration of magnetrons power to drive and combine for a radio frequency cavity at 2450 MHz in CW mode, we have used trim coils adding to a water-cooled magnetron and amplitude modulation feedback to further suppress the side-band noise to -46.7 dBc level. We also demonstrated the phase-locking to an industrial grade cooking magnetron transmitter at 915 MHz with a 75 kW CW power delivered to a water load by using a -26.6 dBc injection signal [2]. The sideband noise from the 3-Phase SCRs DC power supply can be reduced to -16.2 dBc level. Further noise reduction and their power combining scheme using magic-tee and cavity type combiners for higher power application (2x75kW) are to be presented. We intent to use one power station to drive the normal conducting and superconducting RF cavities for the inductrial linac. We also going to demonstarte a vertical SRF cavity test with a high input coupling Q using a 2.45GHz magnetron and comparing with a baseline test result using a solid state amplifier. [1]. doi:10.18429/JACoW-IPAC2015-WEPWI028. [2]. doi:10.18429/JACoW-NAPAC2022-WEZD3. |
||
Poster WEPWB131 [2.445 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB131 | |
About • | Received ※ 16 June 2023 — Revised ※ 28 June 2023 — Accepted ※ 30 June 2023 — Issue date ※ 19 August 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |